Contrastive Self-supervised Learning in Recommender Systems: A Survey

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mengyuan Jing, Yanmin Zhu, Tianzi Zang, Ke Wang
{"title":"Contrastive Self-supervised Learning in Recommender Systems: A Survey","authors":"Mengyuan Jing, Yanmin Zhu, Tianzi Zang, Ke Wang","doi":"10.1145/3627158","DOIUrl":null,"url":null,"abstract":"Deep learning-based recommender systems have achieved remarkable success in recent years. However, these methods usually heavily rely on labeled data (i.e., user-item interactions), suffering from problems such as data sparsity and cold-start. Self-supervised learning, an emerging paradigm that extracts information from unlabeled data, provides insights into addressing these problems. Specifically, contrastive self-supervised learning, due to its flexibility and promising performance, has attracted considerable interest and recently become a dominant branch in self-supervised learning-based recommendation methods. In this survey, we provide an up-to-date and comprehensive review of current contrastive self-supervised learning-based recommendation methods. Firstly, we propose a unified framework for these methods. We then introduce a taxonomy based on the key components of the framework, including view generation strategy, contrastive task, and contrastive objective. For each component, we provide detailed descriptions and discussions to guide the choice of the appropriate method. Finally, we outline open issues and promising directions for future research.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627158","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

Abstract

Deep learning-based recommender systems have achieved remarkable success in recent years. However, these methods usually heavily rely on labeled data (i.e., user-item interactions), suffering from problems such as data sparsity and cold-start. Self-supervised learning, an emerging paradigm that extracts information from unlabeled data, provides insights into addressing these problems. Specifically, contrastive self-supervised learning, due to its flexibility and promising performance, has attracted considerable interest and recently become a dominant branch in self-supervised learning-based recommendation methods. In this survey, we provide an up-to-date and comprehensive review of current contrastive self-supervised learning-based recommendation methods. Firstly, we propose a unified framework for these methods. We then introduce a taxonomy based on the key components of the framework, including view generation strategy, contrastive task, and contrastive objective. For each component, we provide detailed descriptions and discussions to guide the choice of the appropriate method. Finally, we outline open issues and promising directions for future research.
推荐系统中的对比自监督学习研究综述
近年来,基于深度学习的推荐系统取得了显著的成功。然而,这些方法通常严重依赖于标记数据(即用户-项目交互),因此存在数据稀疏性和冷启动等问题。自监督学习是一种新兴的范例,它从未标记的数据中提取信息,为解决这些问题提供了见解。具体来说,对比自监督学习由于其灵活性和良好的性能,引起了人们的广泛关注,最近成为基于自监督学习的推荐方法的一个主导分支。在这项调查中,我们提供了一个最新的和全面的审查,目前对比自监督学习为基础的推荐方法。首先,我们为这些方法提出了一个统一的框架。然后,我们介绍了一个基于框架关键组件的分类法,包括视图生成策略、对比任务和对比目标。对于每个组件,我们提供了详细的描述和讨论,以指导选择合适的方法。最后,我们概述了未来研究的开放问题和有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Information Systems
ACM Transactions on Information Systems 工程技术-计算机:信息系统
CiteScore
9.40
自引率
14.30%
发文量
165
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain: new principled information retrieval models or algorithms with sound empirical validation; observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking; accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques; formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks; development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking; development of computational models of user information preferences and interaction behaviors; creation and analysis of evaluation methodologies for information retrieval and information seeking; or surveys of existing work that propose a significant synthesis. The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信