{"title":"Bianchi Type-V Space Time with Tsallis Holographic Dark Energy","authors":"A. Narasimharao, D. Neelima","doi":"10.1142/s0219887824500634","DOIUrl":null,"url":null,"abstract":"In this paper, using the framework of Saez–Ballester theory, Bianchi Type-V metric Tsallis holographic dark energy models with interacting and non-interacting elements have been constructed. To obtain solutions for the model, we used correlation between metric potentials and varying deceleration parameters. There is additional discussion of the models’ physical characteristics and behavior.","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219887824500634","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, using the framework of Saez–Ballester theory, Bianchi Type-V metric Tsallis holographic dark energy models with interacting and non-interacting elements have been constructed. To obtain solutions for the model, we used correlation between metric potentials and varying deceleration parameters. There is additional discussion of the models’ physical characteristics and behavior.
期刊介绍:
This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.