Magnifiers in semigroups of transformations whose restrictions belong to a given semigroup

IF 0.5 Q3 MATHEMATICS
Sushree Khirabdhi, Shubh N. Singh
{"title":"Magnifiers in semigroups of transformations whose restrictions belong to a given semigroup","authors":"Sushree Khirabdhi, Shubh N. Singh","doi":"10.1142/s1793557123502273","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be the full transformation semigroup on a set [Formula: see text]. For a subset [Formula: see text] of [Formula: see text] and a submonoid [Formula: see text] of [Formula: see text], denote by [Formula: see text] the semigroup under composition consisting of all transformations [Formula: see text] such that the restriction [Formula: see text] of [Formula: see text] to [Formula: see text] belongs to [Formula: see text]. We give necessary and sufficient conditions for an element in [Formula: see text] to be left or right magnifier. We apply these descriptions to obtain more concrete results for the semigroups [Formula: see text] and [Formula: see text], where [Formula: see text] (respectively, [Formula: see text]) is the specific submonoid of [Formula: see text] consisting of all injective (respectively, surjective) transformations. The paper also identifies some results on [Formula: see text] that have appeared in the literature.","PeriodicalId":45737,"journal":{"name":"Asian-European Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793557123502273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be the full transformation semigroup on a set [Formula: see text]. For a subset [Formula: see text] of [Formula: see text] and a submonoid [Formula: see text] of [Formula: see text], denote by [Formula: see text] the semigroup under composition consisting of all transformations [Formula: see text] such that the restriction [Formula: see text] of [Formula: see text] to [Formula: see text] belongs to [Formula: see text]. We give necessary and sufficient conditions for an element in [Formula: see text] to be left or right magnifier. We apply these descriptions to obtain more concrete results for the semigroups [Formula: see text] and [Formula: see text], where [Formula: see text] (respectively, [Formula: see text]) is the specific submonoid of [Formula: see text] consisting of all injective (respectively, surjective) transformations. The paper also identifies some results on [Formula: see text] that have appeared in the literature.
变换半群中的放大镜,其限制属于给定半群
设[公式:见文]为集合[公式:见文]上的全变换半群。对于[公式:见文]的子集[公式:见文]和[公式:见文]的子群[公式:见文],用[公式:见文]表示由所有变换[公式:见文]组成的复合半群,使得[公式:见文]对[公式:见文]的限制[公式:见文]属于[公式:见文]。给出了[公式:见文]中元素为左或右放大镜的充分必要条件。我们应用这些描述得到了关于半群[公式:见文]和[公式:见文]的更具体的结果,其中[公式:见文](分别,[公式:见文])是由所有内射(分别,满射)变换组成的[公式:见文]的特定子群。这篇论文还指出了文献中出现的一些关于[公式:见文本]的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
169
期刊介绍: Asian-European Journal of Mathematics is an international journal which is devoted to original research in the field of pure and applied mathematics. The aim of the journal is to provide a medium by which new ideas can be discussed among researchers from diverse fields in mathematics. It publishes high quality research papers in the fields of contemporary pure and applied mathematics with a broad range of topics including algebra, analysis, topology, geometry, functional analysis, number theory, differential equations, operational research, combinatorics, theoretical statistics and probability, theoretical computer science and logic. Although the journal focuses on the original research articles, it also welcomes survey articles and short notes. All papers will be peer-reviewed within approximately four months.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信