Proximality and transitivity in relation to points that are asymptotic to themselves

IF 0.8 4区 数学 Q2 MATHEMATICS
KAROL GRYSZKA
{"title":"Proximality and transitivity in relation to points that are asymptotic to themselves","authors":"KAROL GRYSZKA","doi":"10.55730/1300-0098.3476","DOIUrl":null,"url":null,"abstract":"We discuss dynamical systems that exhibit at least one weakly asymptotically periodic point. In the general case we prove that the system becomes trivial (it is either a periodic point or a fixed point) provided it is equicontinuous and transitive. This result can be used to provide a simple characterization of periodic points in transitive systems. We also discuss systems whose orbits are both proximal and weakly asymptotically periodic. As a result, we obtain a more general tool to detect mutual dynamics between two close orbits which need not be bounded (or have the empty limit set).","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" 27","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0098.3476","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss dynamical systems that exhibit at least one weakly asymptotically periodic point. In the general case we prove that the system becomes trivial (it is either a periodic point or a fixed point) provided it is equicontinuous and transitive. This result can be used to provide a simple characterization of periodic points in transitive systems. We also discuss systems whose orbits are both proximal and weakly asymptotically periodic. As a result, we obtain a more general tool to detect mutual dynamics between two close orbits which need not be bounded (or have the empty limit set).
与自身渐近的点相关的邻近性和传递性
讨论了具有至少一个弱渐近周期点的动力系统。在一般情况下,我们证明了如果系统是等连续和可传递的,则系统是平凡的(它是周期点或不动点)。这个结果可以用来提供传递系统中周期点的一个简单表征。我们还讨论了轨道是近周期和弱渐近周期的系统。因此,我们获得了一种更通用的工具来检测两个不需要有界(或有空极限集)的紧密轨道之间的相互动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信