{"title":"An example of a non-associative Moufang loop of point classes on a cubic surface","authors":"Dimitri Kanevsky","doi":"10.1007/s10801-023-01274-y","DOIUrl":null,"url":null,"abstract":"Abstract Let V be a cubic surface defined by the equation $$T_0^3+T_1^3+T_2^3+\\theta T_3^3=0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>0</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>1</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>+</mml:mo> <mml:mi>θ</mml:mi> <mml:msubsup> <mml:mi>T</mml:mi> <mml:mn>3</mml:mn> <mml:mn>3</mml:mn> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> over a quadratic extension of 3-adic numbers $$k=\\mathbb {Q}_3(\\theta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$\\theta ^3=1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>θ</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We show that a relation on a set of geometric k-points on V modulo $$(1-\\theta )^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mi>θ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:math> (in a ring of integers of k ) defines an admissible relation and a commutative Moufang loop associated with classes of this admissible equivalence is non-associative. This answers a problem that was formulated by Yu. I. Manin more than 50 years ago about existence of a cubic surface with a non-associative Moufang loop of point classes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10801-023-01274-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Let V be a cubic surface defined by the equation $$T_0^3+T_1^3+T_2^3+\theta T_3^3=0$$ T03+T13+T23+θT33=0 over a quadratic extension of 3-adic numbers $$k=\mathbb {Q}_3(\theta )$$ k=Q3(θ) , where $$\theta ^3=1$$ θ3=1 . We show that a relation on a set of geometric k-points on V modulo $$(1-\theta )^3$$ (1-θ)3 (in a ring of integers of k ) defines an admissible relation and a commutative Moufang loop associated with classes of this admissible equivalence is non-associative. This answers a problem that was formulated by Yu. I. Manin more than 50 years ago about existence of a cubic surface with a non-associative Moufang loop of point classes.