When Does a Hyperbola Meet Its Asymptote? Bounded Infinities, Fictions, and Contradictions in Leibniz

Mikhail Katz, David Sherry, Monica Ugaglia
{"title":"When Does a Hyperbola Meet Its Asymptote? Bounded Infinities, Fictions, and Contradictions in Leibniz","authors":"Mikhail Katz, David Sherry, Monica Ugaglia","doi":"10.36446/rlf2023359","DOIUrl":null,"url":null,"abstract":"In his 1676 text De Quadratura Arithmetica, Leibniz distinguished infinita terminata from infinita interminata. The text also deals with the notion, originating with Desargues, of the perspective point of intersection at infinite distance for parallel lines. We examine contrasting interpretations of these notions in the context of Leibniz's analysis of asymptotes for logarithmic curves and hyperbolas. We point out difficulties that arise due to conflating these notions of infinity. As noted by Rodriguez Hurtado et al., a significant difference exists between the Cartesian model of magnitudes and Leibniz's search for a qualitative model for studying perspective, including ideal points at infinity. We show how respecting the distinction between these notions enables a consistent interpretation thereof.","PeriodicalId":498519,"journal":{"name":"Revista latinoamericana de filosofía","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista latinoamericana de filosofía","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36446/rlf2023359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In his 1676 text De Quadratura Arithmetica, Leibniz distinguished infinita terminata from infinita interminata. The text also deals with the notion, originating with Desargues, of the perspective point of intersection at infinite distance for parallel lines. We examine contrasting interpretations of these notions in the context of Leibniz's analysis of asymptotes for logarithmic curves and hyperbolas. We point out difficulties that arise due to conflating these notions of infinity. As noted by Rodriguez Hurtado et al., a significant difference exists between the Cartesian model of magnitudes and Leibniz's search for a qualitative model for studying perspective, including ideal points at infinity. We show how respecting the distinction between these notions enables a consistent interpretation thereof.
双曲线何时与它的渐近线相交?莱布尼茨的有限无限、虚构与矛盾
莱布尼茨在他1676年的著作《正交算术》(De Quadratura Arithmetica)中区分了无穷终端和无穷中间。本文还讨论了起源于德萨格斯的概念,即平行线在无限距离处的交点透视。我们在莱布尼茨对对数曲线和双曲线的渐近线的分析的背景下检查这些概念的对比解释。我们指出由于把这些无限概念混为一谈而产生的困难。正如Rodriguez Hurtado等人所指出的,笛卡尔的数量级模型与莱布尼茨对研究视角(包括无限远处的理想点)的定性模型的探索之间存在显著差异。我们展示了尊重这些概念之间的区别如何使其得到一致的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信