Bio-electricity production in a single-chamber microbial fuel cell using urine as a substrate

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS
Wilgince Apollon, Sathish-Kumar Kamaraj, Humberto Rodríguez-Fuentes, Juan Florencio Gómez-Leyva, Juan Antonio Vidales-Contreras, María Verónica Mardueño-Aguilar, Alejandro Isabel Luna-Maldonado
{"title":"Bio-electricity production in a single-chamber microbial fuel cell using urine as a substrate","authors":"Wilgince Apollon, Sathish-Kumar Kamaraj, Humberto Rodríguez-Fuentes, Juan Florencio Gómez-Leyva, Juan Antonio Vidales-Contreras, María Verónica Mardueño-Aguilar, Alejandro Isabel Luna-Maldonado","doi":"10.1080/17597269.2023.2277991","DOIUrl":null,"url":null,"abstract":"AbstractThis study aimed to evaluate the performance of a single-chamber microbial fuel cell (SC-MFC) using undiluted livestock urine (i.e. cow, goat, and sheep urine). Data showed that the MFC with cow urine reached a maximum power density of 110.72 ± 0.42 mW m−2 at the maximum current density of 230.88 ± 0.65 mA m−2 and voltage of 277 ± 0.04 mV in a polarization experiment. Whereas, in terms of the long-term operation experiment, the same reactor reached a maximum power density of 7.60 ± 0.06 mW m−2 (on day 10), with an external resistance of 1000 Ω. Besides, 44.30% of microorganisms (strains) were found in the anode of Sheep-MFC due to the association of urine with the substrate, compared to other reactors. The study's findings indicated that the composition of the livestock urine positively affected power generation in the evaluated MFCs. In addition, cow urine was the best substrate for driving MFC technology compared to other types of urine used in this study.Keywords: Electrochemically active bacteriamicrobial fuel cellpower densityorganic substrateurine waste AcknowledgmentsThe first author (WA) acknowledges the National Council of Humanities, Science, and Technology (CONAHCyT). In addition, the authors acknowledge the Support Program for Scientific and Technological Research (PAICYT) at the Autonomous University of Nuevo León, as well as the Molecular Laboratory at the Technological Institute of Tlajomulco for their support.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2277991","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

AbstractThis study aimed to evaluate the performance of a single-chamber microbial fuel cell (SC-MFC) using undiluted livestock urine (i.e. cow, goat, and sheep urine). Data showed that the MFC with cow urine reached a maximum power density of 110.72 ± 0.42 mW m−2 at the maximum current density of 230.88 ± 0.65 mA m−2 and voltage of 277 ± 0.04 mV in a polarization experiment. Whereas, in terms of the long-term operation experiment, the same reactor reached a maximum power density of 7.60 ± 0.06 mW m−2 (on day 10), with an external resistance of 1000 Ω. Besides, 44.30% of microorganisms (strains) were found in the anode of Sheep-MFC due to the association of urine with the substrate, compared to other reactors. The study's findings indicated that the composition of the livestock urine positively affected power generation in the evaluated MFCs. In addition, cow urine was the best substrate for driving MFC technology compared to other types of urine used in this study.Keywords: Electrochemically active bacteriamicrobial fuel cellpower densityorganic substrateurine waste AcknowledgmentsThe first author (WA) acknowledges the National Council of Humanities, Science, and Technology (CONAHCyT). In addition, the authors acknowledge the Support Program for Scientific and Technological Research (PAICYT) at the Autonomous University of Nuevo León, as well as the Molecular Laboratory at the Technological Institute of Tlajomulco for their support.Disclosure statementNo potential conflict of interest was reported by the author(s).
以尿液为底物的单室微生物燃料电池的生物电生产
摘要本研究旨在评价单室微生物燃料电池(SC-MFC)使用未稀释家畜尿液(如牛、山羊和绵羊尿液)的性能。极化实验结果表明,在电流密度为230.88±0.65 mA m−2、电压为277±0.04 mV时,牛尿MFC的最大功率密度为110.72±0.42 mW m−2。而在长期运行实验中,同一反应器的最大功率密度为7.60±0.06 mW m−2(第10天),外阻为1000 Ω。此外,与其他反应器相比,绵羊- mfc阳极中由于尿液与底物的关联而发现的微生物(菌株)占44.30%。研究结果表明,在被评估的mfc中,牲畜尿液的组成对发电有积极影响。此外,与本研究中使用的其他类型的尿液相比,牛尿是驱动MFC技术的最佳底物。关键词:电化学活性细菌微生物燃料电池功率密度有机基质废物致谢第一作者(WA)感谢美国国家人文科学技术委员会(CONAHCyT)。此外,作者感谢新自治大学León的科学和技术研究支持计划(PAICYT)以及Tlajomulco技术研究所的分子实验室的支持。披露声明作者未报告潜在的利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofuels-Uk
Biofuels-Uk Energy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍: Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy. The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources. As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation. Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication. As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信