AnswerTruthDetector: a combined cognitive load approach for separating truthful from deceptive answers in computer-administered questionnaires

Q1 Social Sciences
i-com Pub Date : 2023-11-09 DOI:10.1515/icom-2023-0023
Moritz Maleck, Tom Gross
{"title":"AnswerTruthDetector: a combined cognitive load approach for separating truthful from deceptive answers in computer-administered questionnaires","authors":"Moritz Maleck, Tom Gross","doi":"10.1515/icom-2023-0023","DOIUrl":null,"url":null,"abstract":"Abstract In human-computer interaction, much empirical research exists. Online questionnaires increasingly play an important role. Here the quality of the results depend strongly on the quality of the given answers, and it is essential to distinguish truthful from deceptive answers. There exist elegant single modalities for deception detection in the literature, such as mouse tracking and eye tracking (in this paper, respectively, measuring the pupil diameter). Yet, no combination of these two modalities is available. This paper presents a combined approach of two cognitive-load-based lie detection approaches. We address study administrators who conduct questionnaires in the HCI, wanting to improve the validity of questionnaires.","PeriodicalId":37105,"journal":{"name":"i-com","volume":" 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-com","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/icom-2023-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In human-computer interaction, much empirical research exists. Online questionnaires increasingly play an important role. Here the quality of the results depend strongly on the quality of the given answers, and it is essential to distinguish truthful from deceptive answers. There exist elegant single modalities for deception detection in the literature, such as mouse tracking and eye tracking (in this paper, respectively, measuring the pupil diameter). Yet, no combination of these two modalities is available. This paper presents a combined approach of two cognitive-load-based lie detection approaches. We address study administrators who conduct questionnaires in the HCI, wanting to improve the validity of questionnaires.
AnswerTruthDetector:一种组合认知负荷方法,用于在计算机管理的问卷中分离真实答案和欺骗性答案
在人机交互领域,存在着大量的实证研究。在线调查问卷的作用越来越重要。在这里,结果的质量很大程度上取决于所给出答案的质量,区分真实答案和欺骗性答案是至关重要的。在文献中存在着优雅的单一欺骗检测模式,如鼠标跟踪和眼动追踪(在本文中分别测量瞳孔直径)。然而,目前还没有这两种模式的结合。本文提出了两种基于认知负荷的测谎方法的组合方法。我们针对在HCI中进行问卷调查的研究管理者,希望提高问卷的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
i-com
i-com Social Sciences-Communication
CiteScore
3.80
自引率
0.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信