Density Functional Theory Insight into Chemical Vapor Infiltration

Methane Pub Date : 2023-11-09 DOI:10.3390/methane2040028
Eric A. Walker, Joseph J. Marziale, James Chen
{"title":"Density Functional Theory Insight into Chemical Vapor Infiltration","authors":"Eric A. Walker, Joseph J. Marziale, James Chen","doi":"10.3390/methane2040028","DOIUrl":null,"url":null,"abstract":"Chemical Vapor Infiltration (CVI) has proven remarkably successful in producing strong and lightweight ceramic matrix composite materials. This technology has matured to regular industrial use. However, two fundamental problems remain, and those are the formation of pores and depositing of weaker material than silicon carbide (SiC), namely, Si. Definitive knowledge of the molecular mechanism would catalyze an advance in the chemical precursors used in CVI. In this work, the CVI reaction is modeled using density functional theory (DFT) calculations. The DFT calculations here use the Bayesian Error Estimation Functional with van der Waals correction (BEEF-vdW). The main findings begin with C deposition determining the rate of solid SiC growth due to Si being far more reactive. Therefore, increasing the C content of the precursor is a logical CVI strategy. Methane (CH4) is more reactive than ethane (C2H6) and ethylene (C2H2) and would be effective as an additive to the chemical precursor. Increasing the deposition rate of C has the benefit of decreasing pure Si deposits. Si melts at 1410 °C and CMCs are used in high-temperature settings beyond this melting point, including in aeroengines and nuclear fuel cladding.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane2040028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical Vapor Infiltration (CVI) has proven remarkably successful in producing strong and lightweight ceramic matrix composite materials. This technology has matured to regular industrial use. However, two fundamental problems remain, and those are the formation of pores and depositing of weaker material than silicon carbide (SiC), namely, Si. Definitive knowledge of the molecular mechanism would catalyze an advance in the chemical precursors used in CVI. In this work, the CVI reaction is modeled using density functional theory (DFT) calculations. The DFT calculations here use the Bayesian Error Estimation Functional with van der Waals correction (BEEF-vdW). The main findings begin with C deposition determining the rate of solid SiC growth due to Si being far more reactive. Therefore, increasing the C content of the precursor is a logical CVI strategy. Methane (CH4) is more reactive than ethane (C2H6) and ethylene (C2H2) and would be effective as an additive to the chemical precursor. Increasing the deposition rate of C has the benefit of decreasing pure Si deposits. Si melts at 1410 °C and CMCs are used in high-temperature settings beyond this melting point, including in aeroengines and nuclear fuel cladding.
密度泛函理论洞察化学蒸汽渗透
化学蒸汽渗透(CVI)技术在生产高强度和轻质陶瓷基复合材料方面取得了显著的成功。这项技术已经成熟,可以用于常规工业用途。然而,仍然存在两个基本问题,即孔隙的形成和比碳化硅(SiC)更弱的材料(即Si)的沉积。分子机制的明确知识将催化CVI中使用的化学前体的进步。在这项工作中,使用密度泛函理论(DFT)计算模拟了CVI反应。这里的DFT计算使用带有范德华校正的贝叶斯误差估计函数(cow - vdw)。主要的发现开始于C沉积决定了固体SiC的生长速率,因为Si的反应性更强。因此,增加前体的C含量是一种合乎逻辑的CVI策略。甲烷(CH4)比乙烷(C2H6)和乙烯(C2H2)的反应性更强,可以作为化学前体的添加剂。提高C的沉积速率有利于减少纯Si的沉积。硅熔体在1410°C, cmc用于超过该熔点的高温环境,包括航空发动机和核燃料包壳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信