{"title":"Invariant curves in a discrete-time two-species system","authors":"Ryusuke Kon","doi":"10.1080/10236198.2023.2279632","DOIUrl":null,"url":null,"abstract":"AbstractThe dynamics of discrete-time two-species systems may not be simple even if they have no positive fixed points. To reveal the behaviour of such systems, we focus on a special class of discrete-time two-species systems whose degenerate cases have a line segment of positive fixed points. As a main result, we show that the line segment of positive fixed points persists as an invariant curve under a small perturbation of the degenerate case. The absence of a positive fixed point ensures that such an invariant curve consists of heteroclinic orbits connecting two axial fixed points. The general result is applied to a discrete-time competition model of Ricker type with reproductive delay. The application reveals the existence of heteroclinic orbits connecting two axial 2-cycles, not only heteroclinic orbits connecting two axial fixed points.Keywords: Heteroclinic orbitinvariant curvecompetition systemRicker map2-cycleMathematic Subject classifications: 92-1092B0539A6039A3037N25 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by JSPS KAKENHI Grant Number 20K03735, Japan.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10236198.2023.2279632","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThe dynamics of discrete-time two-species systems may not be simple even if they have no positive fixed points. To reveal the behaviour of such systems, we focus on a special class of discrete-time two-species systems whose degenerate cases have a line segment of positive fixed points. As a main result, we show that the line segment of positive fixed points persists as an invariant curve under a small perturbation of the degenerate case. The absence of a positive fixed point ensures that such an invariant curve consists of heteroclinic orbits connecting two axial fixed points. The general result is applied to a discrete-time competition model of Ricker type with reproductive delay. The application reveals the existence of heteroclinic orbits connecting two axial 2-cycles, not only heteroclinic orbits connecting two axial fixed points.Keywords: Heteroclinic orbitinvariant curvecompetition systemRicker map2-cycleMathematic Subject classifications: 92-1092B0539A6039A3037N25 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by JSPS KAKENHI Grant Number 20K03735, Japan.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.