Discontinuities of the Integrated Density of States for Laplacians Associated with Penrose and Ammann–Beenker Tilings

Pub Date : 2023-05-22 DOI:10.1080/10586458.2023.2206589
David Damanik, Mark Embree, Jake Fillman, May Mei
{"title":"Discontinuities of the Integrated Density of States for Laplacians Associated with Penrose and Ammann–Beenker Tilings","authors":"David Damanik, Mark Embree, Jake Fillman, May Mei","doi":"10.1080/10586458.2023.2206589","DOIUrl":null,"url":null,"abstract":"Aperiodic substitution tilings provide popular models for quasicrystals, materials exhibiting aperiodic order. We study the graph Laplacian associated with four tilings from the mutual local derivability class of the Penrose tiling, as well as the Ammann–Beenker tiling. In each case we exhibit locally-supported eigenfunctions, which necessarily cause jump discontinuities in the integrated density of states for these models. By bounding the multiplicities of these locally-supported modes, in several cases we provide concrete lower bounds on this jump. These results suggest a host of questions about spectral properties of the Laplacian on aperiodic tilings, which we collect at the end of the paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10586458.2023.2206589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Aperiodic substitution tilings provide popular models for quasicrystals, materials exhibiting aperiodic order. We study the graph Laplacian associated with four tilings from the mutual local derivability class of the Penrose tiling, as well as the Ammann–Beenker tiling. In each case we exhibit locally-supported eigenfunctions, which necessarily cause jump discontinuities in the integrated density of states for these models. By bounding the multiplicities of these locally-supported modes, in several cases we provide concrete lower bounds on this jump. These results suggest a host of questions about spectral properties of the Laplacian on aperiodic tilings, which we collect at the end of the paper.
分享
查看原文
与Penrose和Ammann-Beenker Tilings相关的laplacian积分态密度的不连续性
非周期替代瓷砖提供了准晶体的流行模型,材料表现出非周期的秩序。从Penrose平铺和Ammann-Beenker平铺的互局部可导性类出发,研究了与四个平铺相关的图拉普拉斯算子。在每种情况下,我们都展示了局部支持的特征函数,这必然导致这些模型的状态集成密度的跳跃不连续。通过限定这些本地支持模式的多样性,在一些情况下,我们为这种跳跃提供了具体的下限。这些结果提出了关于拉普拉斯在非周期平铺上的光谱性质的一系列问题,这些问题我们在论文的最后收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信