Robust Finite Element Discretization and Solvers for Distributed Elliptic Optimal Control Problems

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Ulrich Langer, Richard Löscher, Olaf Steinbach, Huidong Yang
{"title":"Robust Finite Element Discretization and Solvers for Distributed Elliptic Optimal Control Problems","authors":"Ulrich Langer, Richard Löscher, Olaf Steinbach, Huidong Yang","doi":"10.1515/cmam-2022-0138","DOIUrl":null,"url":null,"abstract":"Abstract We consider standard tracking-type, distributed elliptic optimal control problems with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> L^{2} regularization, and their finite element discretization. We are investigating the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> L^{2} error between the finite element approximation <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>u</m:mi> <m:mrow> <m:mi>ϱ</m:mi> <m:mo>⁢</m:mo> <m:mi>h</m:mi> </m:mrow> </m:msub> </m:math> u_{\\varrho h} of the state <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>u</m:mi> <m:mi>ϱ</m:mi> </m:msub> </m:math> u_{\\varrho} and the desired state (target) <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mover accent=\"true\"> <m:mi>u</m:mi> <m:mo>¯</m:mo> </m:mover> </m:math> \\overline{u} in terms of the regularization parameter 𝜚 and the mesh size ℎ that leads to the optimal choice <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ϱ</m:mi> <m:mo>=</m:mo> <m:msup> <m:mi>h</m:mi> <m:mn>4</m:mn> </m:msup> </m:mrow> </m:math> \\varrho=h^{4} . It turns out that, for this choice of the regularization parameter, we can devise simple Jacobi-like preconditioned MINRES or Bramble–Pasciak CG methods that allow us to solve the reduced discrete optimality system in asymptotically optimal complexity with respect to the arithmetical operations and memory demand. The theoretical results are confirmed by several benchmark problems with targets of various regularities including discontinuous targets.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"37 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0138","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We consider standard tracking-type, distributed elliptic optimal control problems with L 2 L^{2} regularization, and their finite element discretization. We are investigating the L 2 L^{2} error between the finite element approximation u ϱ h u_{\varrho h} of the state u ϱ u_{\varrho} and the desired state (target) u ¯ \overline{u} in terms of the regularization parameter 𝜚 and the mesh size ℎ that leads to the optimal choice ϱ = h 4 \varrho=h^{4} . It turns out that, for this choice of the regularization parameter, we can devise simple Jacobi-like preconditioned MINRES or Bramble–Pasciak CG methods that allow us to solve the reduced discrete optimality system in asymptotically optimal complexity with respect to the arithmetical operations and memory demand. The theoretical results are confirmed by several benchmark problems with targets of various regularities including discontinuous targets.
分布椭圆型最优控制问题的鲁棒有限元离散化及求解方法
摘要考虑具有l2 L^{2}正则化的标准跟踪型分布椭圆型最优控制问题及其有限元离散化问题。我们正在研究状态u ϱ u_{\varrho}与期望状态(目标)u¯\overline{u}在正则化参数𝜚和网格尺寸方面的有限元近似u ϱ¹h u_{\varrho h}之间的l2 L^{2}误差,从而得出最优选择ϱ =h 4 \varrho=h^{4}。事实证明,对于正则化参数的选择,我们可以设计简单的类雅可比预条件MINRES或Bramble-Pasciak CG方法,这些方法允许我们在算术操作和内存需求方面以渐进最优的复杂度解决减少的离散最优性系统。通过几个具有不同规律目标(包括不连续目标)的基准问题验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信