A unified approach to thermo-mechano-caloric -characterization of elastocaloric materials

IF 7 3区 材料科学 Q1 ENERGY & FUELS
Franziska Louia, Nicolas Michaelis, Andreas Schuetze, Stefan Seelecke, Paul Motzki
{"title":"A unified approach to thermo-mechano-caloric -characterization of elastocaloric materials","authors":"Franziska Louia, Nicolas Michaelis, Andreas Schuetze, Stefan Seelecke, Paul Motzki","doi":"10.1088/2515-7655/acfb39","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a novel approach to characterizing the relevant mechanical, thermal and caloric properties of elastocalorics material in a single testing device. Usually, tensile experiments are performed to determine the rate- and process-depending stress/strain behavior of nickel-titanium-based shape memory alloys and potentially other elastocaloric materials made from metallic alloys. These tests are relevant for, e.g., characterization of hysteresis properties and subsequent calculation of mechanical work input. In addition, simultaneous observation with an infrared camera is useful to understand temperature evolution and maximum temperature changes achievable during the loading/unloading process. Characterization of the caloric properties of the materials determines latent heats and, together with the mechanical work, also the material coefficient of performance. It is typically carried out via differential scanning calorimetry (DSC), which is performed in a separate device and requires a second experiment with different types of samples. Furthermore, DSC measurements do not reflect the way mechanically induced phase transformations trigger the release and absorption of latent heats as it is the case for elastocalorics. In order to provide a more consistent understanding of the relevant elastocaloric material properties, we here present a novel method that (a) allows for a systematic determination of load-dependent latent heats and (b) introduces a comprehensive testing setup and suitable testing routine to determine the mechanical, thermal and caloric parameters in the same experimental device and with the same sample, thus greatly simplifying the overall procedure.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"112 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2515-7655/acfb39","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper presents a novel approach to characterizing the relevant mechanical, thermal and caloric properties of elastocalorics material in a single testing device. Usually, tensile experiments are performed to determine the rate- and process-depending stress/strain behavior of nickel-titanium-based shape memory alloys and potentially other elastocaloric materials made from metallic alloys. These tests are relevant for, e.g., characterization of hysteresis properties and subsequent calculation of mechanical work input. In addition, simultaneous observation with an infrared camera is useful to understand temperature evolution and maximum temperature changes achievable during the loading/unloading process. Characterization of the caloric properties of the materials determines latent heats and, together with the mechanical work, also the material coefficient of performance. It is typically carried out via differential scanning calorimetry (DSC), which is performed in a separate device and requires a second experiment with different types of samples. Furthermore, DSC measurements do not reflect the way mechanically induced phase transformations trigger the release and absorption of latent heats as it is the case for elastocalorics. In order to provide a more consistent understanding of the relevant elastocaloric material properties, we here present a novel method that (a) allows for a systematic determination of load-dependent latent heats and (b) introduces a comprehensive testing setup and suitable testing routine to determine the mechanical, thermal and caloric parameters in the same experimental device and with the same sample, thus greatly simplifying the overall procedure.
弹性热材料热-机械-热表征的统一方法
摘要:本文提出了一种在单一测试装置中表征弹性热材料相关力学、热学和热性能的新方法。通常,拉伸实验是为了确定镍钛基形状记忆合金和其他可能由金属合金制成的弹性热材料的速率和工艺依赖的应力/应变行为。这些测试与诸如迟滞特性的表征和随后的机械功输入的计算有关。此外,红外相机的同步观测有助于了解加载/卸载过程中的温度演变和最大温度变化。材料热特性的表征决定了潜热,并与机械功一起决定了材料的性能系数。它通常通过差示扫描量热法(DSC)进行,这是在一个单独的设备中进行的,需要用不同类型的样品进行第二次实验。此外,DSC测量不能反映机械诱导的相变触发潜热释放和吸收的方式,因为它是弹性热学的情况。为了提供对相关弹性热材料性能更一致的理解,我们在这里提出了一种新方法,(a)允许系统地确定负载相关潜热,(b)引入了一个全面的测试设置和合适的测试程序,以确定同一实验设备和相同样品的机械,热和热量参数,从而大大简化了整个过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
1.40%
发文量
58
期刊介绍: The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信