Non-Existence of S-Integrable Three-Point Partial Difference Equations in the Lattice Plane

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Decio Levi, Miguel A. Rodríguez
{"title":"Non-Existence of S-Integrable Three-Point Partial Difference Equations in the Lattice Plane","authors":"Decio Levi, Miguel A. Rodríguez","doi":"10.3842/sigma.2023.084","DOIUrl":null,"url":null,"abstract":"Determining if an (1+1)-differential-difference equation is integrable or not (in the sense of possessing an infinite number of symmetries) can be reduced to the study of the dependence of the equation on the lattice points, according to Yamilov's theorem. We shall apply this result to a class of differential-difference equations obtained as partial continuous limits of 3-points difference equations in the plane and conclude that they cannot be integrable.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"264 11","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.084","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Determining if an (1+1)-differential-difference equation is integrable or not (in the sense of possessing an infinite number of symmetries) can be reduced to the study of the dependence of the equation on the lattice points, according to Yamilov's theorem. We shall apply this result to a class of differential-difference equations obtained as partial continuous limits of 3-points difference equations in the plane and conclude that they cannot be integrable.
格平面上s可积三点偏差分方程的不存在性
根据亚米洛夫定理,确定一个(1+1)-微分-差分方程是否可积(在具有无限多个对称的意义上)可以归结为研究方程对晶格点的依赖关系。我们将这一结果应用于作为三点差分方程在平面上的部分连续极限而得到的一类微分-差分方程,并得出它们不可积的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信