Hilbert Metric in the Unit Ball

Pub Date : 2023-10-24 DOI:10.1556/012.2023.01544
Oona Rainio, Matti Vuorinen
{"title":"Hilbert Metric in the Unit Ball","authors":"Oona Rainio, Matti Vuorinen","doi":"10.1556/012.2023.01544","DOIUrl":null,"url":null,"abstract":"The Hilbert metric between two points 𝑥, 𝑦 in a bounded convex domain 𝐺 is defined as the logarithm of the cross-ratio 𝑥, 𝑦 and the intersection points of the Euclidean line passing through the points 𝑥, 𝑦 and the boundary of the domain. Here, we study this metric in the case of the unit ball 𝔹 𝑛 . We present an identity between the Hilbert metric and the hyperbolic metric, give several inequalities for the Hilbert metric, and results related to the inclusion properties of the balls defined in the Hilbert metric. Furthermore, we study the distortion of the Hilbert metric under conformal and quasiregular mappings.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/012.2023.01544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Hilbert metric between two points 𝑥, 𝑦 in a bounded convex domain 𝐺 is defined as the logarithm of the cross-ratio 𝑥, 𝑦 and the intersection points of the Euclidean line passing through the points 𝑥, 𝑦 and the boundary of the domain. Here, we study this metric in the case of the unit ball 𝔹 𝑛 . We present an identity between the Hilbert metric and the hyperbolic metric, give several inequalities for the Hilbert metric, and results related to the inclusion properties of the balls defined in the Hilbert metric. Furthermore, we study the distortion of the Hilbert metric under conformal and quasiregular mappings.
分享
查看原文
单位球中的希尔伯特公制
有界凸域𝐺中两点间的希尔伯特度规定义为相交比的对数,以及经过点的欧几里得线与域边界的相交点的对数。在这里,我们研究了单位球𝑛的情况下的度量。我们给出了希尔伯特度规和双曲度规之间的恒等式,给出了希尔伯特度规的几个不等式,以及与希尔伯特度规中定义的球的包含性质有关的结果。进一步研究了希尔伯特度规在保角和拟正则映射下的畸变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信