{"title":"Diels–Alder cycloadditions of fullerene: Advances in mechanistic theory","authors":"Hong-Yan Jiao, Chun-Xiang Li, Jun-Ru He, Jia-Li Peng, Pei-Ke Jia, Bin-Bin Xie, Cheng-Xing Cui","doi":"10.1002/poc.4579","DOIUrl":null,"url":null,"abstract":"<p>Fullerene exhibits a wealth of interesting characteristics owing to its unique π-electron configuration. The structure and properties of fullerene can be manipulated by introducing chemical groups to the carbon–carbon bonds via organic reactions, extending its application field. The Diels–Alder (<b>DA</b>) cycloaddition reaction is commonly used to decorate the carbon cage of fullerene. Furthermore, atoms, ions, clusters, and molecules can be inserted into the hollow carbon cage of a fullerene, thereby changing the electron transfer process within the fullerene cage and thus the reactivity of the as well as the regioselectivity of the <b>DA</b> cycloaddition reaction. Computer-based theoretical modeling is an essential tool for studying chemistry. Herein, we provide a brief review of theoretical investigations into the cycloaddition mechanism of two most common fullerenes (C<sub>60</sub> and C<sub>70</sub>), especially in terms of the effects of encapsulated chemical species based on the distortion–interaction model. We hope that the current mini review will provide a useful and interesting resource for researchers working on—or simply being interested in—the in silico investigation of fullerenes and their DA-based modification.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4579","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Fullerene exhibits a wealth of interesting characteristics owing to its unique π-electron configuration. The structure and properties of fullerene can be manipulated by introducing chemical groups to the carbon–carbon bonds via organic reactions, extending its application field. The Diels–Alder (DA) cycloaddition reaction is commonly used to decorate the carbon cage of fullerene. Furthermore, atoms, ions, clusters, and molecules can be inserted into the hollow carbon cage of a fullerene, thereby changing the electron transfer process within the fullerene cage and thus the reactivity of the as well as the regioselectivity of the DA cycloaddition reaction. Computer-based theoretical modeling is an essential tool for studying chemistry. Herein, we provide a brief review of theoretical investigations into the cycloaddition mechanism of two most common fullerenes (C60 and C70), especially in terms of the effects of encapsulated chemical species based on the distortion–interaction model. We hope that the current mini review will provide a useful and interesting resource for researchers working on—or simply being interested in—the in silico investigation of fullerenes and their DA-based modification.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.