Han Li, Ziyu Yan, Melinda Peng, Xuyang Ge, Zhuo Wang
{"title":"Unusual Tropical cyclone Tracks under the Influence of Upper Tropospheric Cold Low","authors":"Han Li, Ziyu Yan, Melinda Peng, Xuyang Ge, Zhuo Wang","doi":"10.1175/mwr-d-23-0074.1","DOIUrl":null,"url":null,"abstract":"Abstract Tropical cyclones (TCs) accompanied by an upper tropospheric cold low (CL) can experience unusual tracks. Idealized simulations resembling observed scenarios are designed in this study to investigate the impacts of a CL on TC tracks. The sensitivity of the TC motion to its location relative to the CL is examined. The results show that a TC follows a counterclockwise semicircle track if initially located east of a CL while a TC experiences a small southward looping track, followed by a sudden northward turn if initially located west of a CL. A TC on the west side experiences opposing CL and β steering, while they act in the same direction when a TC is on the east side of CL. The steering flow analyses show that the steering vector is dominated by upper-level flow induced by the CL at early stage. The influence of CL extends downward and contributes to the lower-tropospheric asymmetric flow pattern of TC. As these two systems approach, the TC divergent outflow erodes the CL. The CL circulation is deformed and eventually merged with the TC when they are close. Since the erosion of CL, the TC motion is primarily related to β gyres at later stage. The sensitivity of TC motion to the CL depth is also examined. TCs located west of a CL experience a westward track if the CL is shallow. In contrast, TCs initially located east of a CL all take a smooth track irrespective of the CL depth, and the CL depth mainly influences the track curvature and the TC translation speed.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":"77 3-4","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0074.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Tropical cyclones (TCs) accompanied by an upper tropospheric cold low (CL) can experience unusual tracks. Idealized simulations resembling observed scenarios are designed in this study to investigate the impacts of a CL on TC tracks. The sensitivity of the TC motion to its location relative to the CL is examined. The results show that a TC follows a counterclockwise semicircle track if initially located east of a CL while a TC experiences a small southward looping track, followed by a sudden northward turn if initially located west of a CL. A TC on the west side experiences opposing CL and β steering, while they act in the same direction when a TC is on the east side of CL. The steering flow analyses show that the steering vector is dominated by upper-level flow induced by the CL at early stage. The influence of CL extends downward and contributes to the lower-tropospheric asymmetric flow pattern of TC. As these two systems approach, the TC divergent outflow erodes the CL. The CL circulation is deformed and eventually merged with the TC when they are close. Since the erosion of CL, the TC motion is primarily related to β gyres at later stage. The sensitivity of TC motion to the CL depth is also examined. TCs located west of a CL experience a westward track if the CL is shallow. In contrast, TCs initially located east of a CL all take a smooth track irrespective of the CL depth, and the CL depth mainly influences the track curvature and the TC translation speed.
期刊介绍:
Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.