Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Ghayth Ouirdani, Othmane El Moize
{"title":"Bargmann transform and statistical properties for nonlinear coherent states of the isotonic oscillator","authors":"Ghayth Ouirdani, Othmane El Moize","doi":"10.1515/zna-2023-0206","DOIUrl":null,"url":null,"abstract":"Abstract We construct a new class of nonlinear coherent states for the isotonic oscillator by replacing the factorial of the coefficients <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>/</m:mo> <m:msqrt> <m:mrow> <m:mi>n</m:mi> <m:mo>!</m:mo> </m:mrow> </m:msqrt> </m:math> ${z}^{n}/\\sqrt{n!}$ of the canonical coherent states by the factorial <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> <m:mrow> <m:mi>γ</m:mi> </m:mrow> </m:msubsup> <m:mo>!</m:mo> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>γ</m:mi> </m:mrow> </m:msubsup> <m:mo>.</m:mo> <m:msubsup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>γ</m:mi> </m:mrow> </m:msubsup> <m:mo>…</m:mo> <m:msubsup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> <m:mrow> <m:mi>γ</m:mi> </m:mrow> </m:msubsup> </m:math> ${x}_{n}^{\\gamma }!={x}_{1}^{\\gamma }.{x}_{2}^{\\gamma }\\dots {x}_{n}^{\\gamma }$ with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>γ</m:mi> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:math> ${x}_{0}^{\\gamma }=0$ , where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> <m:mrow> <m:mi>γ</m:mi> </m:mrow> </m:msubsup> </m:math> ${x}_{n}^{\\gamma }$ is a sequence of positive numbers and γ is a positive real parameter. This also leads to the construction of a Bargmann-type integral transform which will allow us to find some integral transforms for orthogonal polynomials. The statistics of our coherent states will also be considered by the calculus of one called Mandel parameter. The squeezing phenomenon was also discussed.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":"25 11","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0206","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We construct a new class of nonlinear coherent states for the isotonic oscillator by replacing the factorial of the coefficients z n / n ! ${z}^{n}/\sqrt{n!}$ of the canonical coherent states by the factorial x n γ ! = x 1 γ . x 2 γ x n γ ${x}_{n}^{\gamma }!={x}_{1}^{\gamma }.{x}_{2}^{\gamma }\dots {x}_{n}^{\gamma }$ with x 0 γ = 0 ${x}_{0}^{\gamma }=0$ , where x n γ ${x}_{n}^{\gamma }$ is a sequence of positive numbers and γ is a positive real parameter. This also leads to the construction of a Bargmann-type integral transform which will allow us to find some integral transforms for orthogonal polynomials. The statistics of our coherent states will also be considered by the calculus of one called Mandel parameter. The squeezing phenomenon was also discussed.
等振子非线性相干态的巴格曼变换和统计性质
通过替换系数z n / n的阶乘,构造了一类新的等压振荡器的非线性相干态。${z}^{n}/\sqrt{n!}$正则相干态的阶乘x n γ != x1 γ。x2 γ…X n γ ${x}_{n}^{\gamma }!={x}_{1}^{\gamma }.{x}_{2}^{\gamma }\dots {x}_{n}^{\gamma }$其中X 0 γ = 0 ${x}_{0}^{\gamma }=0$,其中X n γ ${x}_{n}^{\gamma }$是一个正数序列,γ是一个正实参数。这也导致了巴格曼型积分变换的构造,它将使我们能够找到正交多项式的一些积分变换。相干态的统计也将通过曼德尔参数的演算来考虑。并对挤压现象进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
81
审稿时长
3.3 months
期刊介绍: A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. Authors are encouraged to pay particular attention to a clear exposition of their respective subject, addressing a wide readership. In accordance with the name of our journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena. In particular, we welcome experiment-oriented contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信