Ana P Valerga Puerta, Gema Fernandez-Sanz, Fermin Bañon, Severo R Fernandez-Vidal
{"title":"Biodegradable materials with FDM technology under the aging effect of solar and saltwater exposure","authors":"Ana P Valerga Puerta, Gema Fernandez-Sanz, Fermin Bañon, Severo R Fernandez-Vidal","doi":"10.1177/16878132231201297","DOIUrl":null,"url":null,"abstract":"The durability and degradation of polymers is very important for product design in terms of material choice. The degradation behavior of two biodegradable thermoplastic materials manufactured by 3D printing, Enviro ABS and PLA, was studied. The action of the sun and seawater was simulated to find out how they affect the properties of these materials over a period of 8 weeks. The yield strength, maximum elongation, ultimate tensile strength, and microscopy were analyzed, as well as dimensions and mass changes. These biodegradable materials were studied to conclude whether there is an environmentally friendly alternative to traditional ABS, being one of the most widely used petroleum-based plastics in industry and in fused deposition modeling (FDM) or fused filament fabrication (FFF). PLA showed a weight loss and increase in ultimate tensile stress on degradation by sunlight and a prolonged decrease in ultimate tensile stress on degradation by seawater due to humidity absorption. In contrast, Enviro ABS does not show a noticeable difference between the beginning and the end of the test, which leads to the conclusion that Enviro ABS is a good alternative to conventional ABS without forgetting the environmental effects that are currently involved in the manufacture, recycling and composting of this type of material.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"74 11-12","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231201297","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The durability and degradation of polymers is very important for product design in terms of material choice. The degradation behavior of two biodegradable thermoplastic materials manufactured by 3D printing, Enviro ABS and PLA, was studied. The action of the sun and seawater was simulated to find out how they affect the properties of these materials over a period of 8 weeks. The yield strength, maximum elongation, ultimate tensile strength, and microscopy were analyzed, as well as dimensions and mass changes. These biodegradable materials were studied to conclude whether there is an environmentally friendly alternative to traditional ABS, being one of the most widely used petroleum-based plastics in industry and in fused deposition modeling (FDM) or fused filament fabrication (FFF). PLA showed a weight loss and increase in ultimate tensile stress on degradation by sunlight and a prolonged decrease in ultimate tensile stress on degradation by seawater due to humidity absorption. In contrast, Enviro ABS does not show a noticeable difference between the beginning and the end of the test, which leads to the conclusion that Enviro ABS is a good alternative to conventional ABS without forgetting the environmental effects that are currently involved in the manufacture, recycling and composting of this type of material.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering