Machine Learning for Precise Rice Variety Classification in Tropical Environments Using UAV-Based Multispectral Sensing

Arif K. Wijayanto, Ahmad Junaedi, Azwar A. Sujaswara, Miftakhul B. R. Khamid, Lilik B. Prasetyo, Chiharu Hongo, Hiroaki Kuze
{"title":"Machine Learning for Precise Rice Variety Classification in Tropical Environments Using UAV-Based Multispectral Sensing","authors":"Arif K. Wijayanto, Ahmad Junaedi, Azwar A. Sujaswara, Miftakhul B. R. Khamid, Lilik B. Prasetyo, Chiharu Hongo, Hiroaki Kuze","doi":"10.3390/agriengineering5040123","DOIUrl":null,"url":null,"abstract":"An efficient assessment of rice varieties in tropical regions is crucial for selecting cultivars suited to unique environmental conditions. This study explores machine learning algorithms that leverage multispectral sensor data from UAVs to evaluate rice varieties. It focuses on three paddy rice types at different ages (six, nine, and twelve weeks after planting), analyzing data from four spectral bands and vegetation indices using various algorithms for classification. The results show that the neural network (NN) algorithm is superior, achieving an area under the curve value of 0.804. The twelfth week post-planting yielded the most accurate results, with green reflectance the dominant predictor, surpassing the traditional vegetation indices. This study demonstrates the rapid and effective classification of rice varieties using UAV-based multispectral sensors and NN algorithms to enhance agricultural practices and global food security.","PeriodicalId":7846,"journal":{"name":"AgriEngineering","volume":"151 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering5040123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient assessment of rice varieties in tropical regions is crucial for selecting cultivars suited to unique environmental conditions. This study explores machine learning algorithms that leverage multispectral sensor data from UAVs to evaluate rice varieties. It focuses on three paddy rice types at different ages (six, nine, and twelve weeks after planting), analyzing data from four spectral bands and vegetation indices using various algorithms for classification. The results show that the neural network (NN) algorithm is superior, achieving an area under the curve value of 0.804. The twelfth week post-planting yielded the most accurate results, with green reflectance the dominant predictor, surpassing the traditional vegetation indices. This study demonstrates the rapid and effective classification of rice varieties using UAV-based multispectral sensors and NN algorithms to enhance agricultural practices and global food security.
基于无人机多光谱遥感的热带环境下水稻品种精确分类机器学习
对热带地区的水稻品种进行有效的评估对于选择适合其独特环境条件的品种至关重要。本研究探索了利用无人机多光谱传感器数据来评估水稻品种的机器学习算法。以种植后6周、9周和12周的3种水稻类型为研究对象,利用不同的分类算法对4个光谱波段和植被指数数据进行分析。结果表明,神经网络(NN)算法更优,曲线下面积值为0.804。种植后第12周的结果最准确,绿色反射率是主要的预测因子,超过了传统的植被指数。本研究展示了利用基于无人机的多光谱传感器和神经网络算法对水稻品种进行快速有效的分类,以增强农业实践和全球粮食安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信