{"title":"A novel fuzzy inference method for urban incomplete road weight assignment","authors":"Longhao Wang, Xiaoping Rui","doi":"10.1080/10095020.2023.2261768","DOIUrl":null,"url":null,"abstract":"One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information. To facilitate the estimation of the road’s weight, Global Position System (GPS) data are commonly used in obtaining real-time traffic information. However, the information obtained by taxi-GPS does not cover the entire road network. Aiming at incomplete traffic information on urban roads, this paper proposes a novel fuzzy inference method. It considers the combined effect of road grade, traffic information, and other spatial factors. Taking the third law of geography as the basic premise, that is, the more similar the geographical environment, the more similar the characteristics of the geographical target will be. This method uses a Typical Link Pattern (TLP) model to describe the geographical environment. The TLP represents typical road sections with complete information. Then, it determines the relationship between roads lacking traffic information and the TLPs according to their related factors. After obtaining the TLPs, this method ascertains the weight of road links by calculating their similarities with TLPs based on the theory of fuzzy inference. Aiming at road links at different places, the dividing – conquering strategy and globe algorithm are also introduced to calculate the weight. These two strategies are used to address the excessively fragmented or lengthy links. The experimental results with the case of Newcastle show robustness in that the average Root Mean Square Error (RMSE) is 1.430 mph, and the bias is 0.2%; the overall RMSE is 11.067 mph, and the bias is 0.6%. This article is the first to combine the third law of geography with fuzzy inference, which significantly improves the estimation accuracy of road weights with incomplete information. Empirical application and validation show that the method can accurately predict vehicle speed under incomplete information.","PeriodicalId":48531,"journal":{"name":"Geo-spatial Information Science","volume":"36 3","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geo-spatial Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10095020.2023.2261768","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
One of the keys in time-dependent routing is determining the weight of each road network link based on traffic information. To facilitate the estimation of the road’s weight, Global Position System (GPS) data are commonly used in obtaining real-time traffic information. However, the information obtained by taxi-GPS does not cover the entire road network. Aiming at incomplete traffic information on urban roads, this paper proposes a novel fuzzy inference method. It considers the combined effect of road grade, traffic information, and other spatial factors. Taking the third law of geography as the basic premise, that is, the more similar the geographical environment, the more similar the characteristics of the geographical target will be. This method uses a Typical Link Pattern (TLP) model to describe the geographical environment. The TLP represents typical road sections with complete information. Then, it determines the relationship between roads lacking traffic information and the TLPs according to their related factors. After obtaining the TLPs, this method ascertains the weight of road links by calculating their similarities with TLPs based on the theory of fuzzy inference. Aiming at road links at different places, the dividing – conquering strategy and globe algorithm are also introduced to calculate the weight. These two strategies are used to address the excessively fragmented or lengthy links. The experimental results with the case of Newcastle show robustness in that the average Root Mean Square Error (RMSE) is 1.430 mph, and the bias is 0.2%; the overall RMSE is 11.067 mph, and the bias is 0.6%. This article is the first to combine the third law of geography with fuzzy inference, which significantly improves the estimation accuracy of road weights with incomplete information. Empirical application and validation show that the method can accurately predict vehicle speed under incomplete information.
期刊介绍:
Geo-spatial Information Science was founded in 1998 by Wuhan University, and is now published in partnership with Taylor & Francis. The journal publishes high quality research on the application and development of surveying and mapping technology, including photogrammetry, remote sensing, geographical information systems, cartography, engineering surveying, GPS, geodesy, geomatics, geophysics, and other related fields. The journal particularly encourages papers on innovative applications and theories in the fields above, or of an interdisciplinary nature. In addition to serving as a source reference and archive of advancements in these disciplines, Geo-spatial Information Science aims to provide a platform for communication between researchers and professionals concerned with the topics above. The editorial committee of the journal consists of 21 professors and research scientists from different regions and countries, such as America, Germany, Switzerland, Austria, Hong Kong and China.