Dirichlet problem for noncoercive nonlinear elliptic equations with singular drift term in unbounded domains

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
Patrizia Di Gironimo, Sara Monsurrò, Gabriella Zecca
{"title":"Dirichlet problem for noncoercive nonlinear elliptic equations with singular drift term in unbounded domains","authors":"Patrizia Di Gironimo, Sara Monsurrò, Gabriella Zecca","doi":"10.1051/cocv/2023076","DOIUrl":null,"url":null,"abstract":"In this paper we study a Dirichlet problem for noncoercive nonlinear elliptic equations with first order term in an unbounded domain. We obtain Stampacchia type existence, regularity and uniqueness results, when the singular drift term is controlled through a function in a suitable functional space, strictly containing Lebesgue one. The main tools are a weak maximum principle together with some a priori estimates proved by contradiction.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"39 6","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/cocv/2023076","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study a Dirichlet problem for noncoercive nonlinear elliptic equations with first order term in an unbounded domain. We obtain Stampacchia type existence, regularity and uniqueness results, when the singular drift term is controlled through a function in a suitable functional space, strictly containing Lebesgue one. The main tools are a weak maximum principle together with some a priori estimates proved by contradiction.
无界区域上具有奇异漂移项的非强制非线性椭圆方程的Dirichlet问题
研究了无界区域上非强制一阶非线性椭圆方程的Dirichlet问题。当奇异漂移项在合适的函数空间中被函数控制时,我们得到了Stampacchia型的存在性、正则性和唯一性结果。主要的工具是一个弱极大值原理和一些由矛盾证明的先验估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信