Dariush Mehboodi, Reza Kamali, Saeed Kheirati Ronizi, Sina Amini Akbarabadi
{"title":"Flow and Heat Transfer in Two-Phase Flow Immiscible Droplets in Microchannels","authors":"Dariush Mehboodi, Reza Kamali, Saeed Kheirati Ronizi, Sina Amini Akbarabadi","doi":"10.1080/15567265.2023.2271961","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe enhancement of heat transfer in microchannels without phase change is a significant area of study, primarily driven by the internal fluid recirculation in two-phase flows. This investigation focuses on a circular microchannel, 100 μm in diameter, where mineral oil droplets are introduced into a water flow. The study utilizes the conservative level set method for precise interface tracking and liquid film thickness measurement. This research introduces a modified Nusselt number, specifically tailored to describe the heat transfer characteristics of multiphase flows. The study delves into the effects of varying droplet sizes, from small spheres to a slug. The findings indicate that the most significant heat transfer enhancement occurs with droplets whose volume closely matches that of a sphere fitting within the channel. Moreover, the investigation explores the impact of parameters like inlet velocity, primary-phase slug length, and contact angle. Notably, higher inlet velocities lead to improved heat transfer, resulting in a substantial increase in the Nusselt number compared to single-phase flows. The study underscores the delicate balance between recirculation intensity and droplet heat capacity concerning slug length, as excessive variations can harm thermal performance. It also highlights the pivotal role of surface wettability, showing improved thermal performance on hydrophobic surfaces.KEYWORDS: Slug flowheat transferpressure dropNusselt numbercontact anglemicrochannel Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"26 3","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15567265.2023.2271961","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe enhancement of heat transfer in microchannels without phase change is a significant area of study, primarily driven by the internal fluid recirculation in two-phase flows. This investigation focuses on a circular microchannel, 100 μm in diameter, where mineral oil droplets are introduced into a water flow. The study utilizes the conservative level set method for precise interface tracking and liquid film thickness measurement. This research introduces a modified Nusselt number, specifically tailored to describe the heat transfer characteristics of multiphase flows. The study delves into the effects of varying droplet sizes, from small spheres to a slug. The findings indicate that the most significant heat transfer enhancement occurs with droplets whose volume closely matches that of a sphere fitting within the channel. Moreover, the investigation explores the impact of parameters like inlet velocity, primary-phase slug length, and contact angle. Notably, higher inlet velocities lead to improved heat transfer, resulting in a substantial increase in the Nusselt number compared to single-phase flows. The study underscores the delicate balance between recirculation intensity and droplet heat capacity concerning slug length, as excessive variations can harm thermal performance. It also highlights the pivotal role of surface wettability, showing improved thermal performance on hydrophobic surfaces.KEYWORDS: Slug flowheat transferpressure dropNusselt numbercontact anglemicrochannel Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.