{"title":"Remarks on the L p convergence of Bessel–Fourier series on the disc","authors":"Ryan Luis Acosta Babb","doi":"10.5802/crmath.464","DOIUrl":null,"url":null,"abstract":"The L p convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for p≠2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the L p convergence of the Bessel–Fourier series in the mixed norm space L rad p (L ang 2 ) on the disk for the range 4 3<p<4. We then describe how to modify their result to obtain L p (𝔻,rdrdt) norm convergence in the subspace L rad p (L ang q ) (1 p+1 q=1) for the restricted range 2≤p<4.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The L p convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for p≠2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the L p convergence of the Bessel–Fourier series in the mixed norm space L rad p (L ang 2 ) on the disk for the range 4 3