Convexity in (Colored) Affine Semigroups

Pub Date : 2023-10-24 DOI:10.1556/012.2023.01545
Jesús A. De Loera, Christopher O’Neill, Chengyang Wang
{"title":"Convexity in (Colored) Affine Semigroups","authors":"Jesús A. De Loera, Christopher O’Neill, Chengyang Wang","doi":"10.1556/012.2023.01545","DOIUrl":null,"url":null,"abstract":"In this paper, we explore affine semigroup versions of the convex geometry theorems of Helly, Tverberg, and Carathéodory. Additionally, we develop a new theory of colored affine semigroups , where the semigroup generators each receive a color and the elements of the semigroup take into account the colors used (the classical theory of affine semigroups coincides with the case in which all generators have the same color). We prove an analog of Tverberg’s theorem and colorful Helly’s theorem for semigroups, as well as a version of colorful Carathéodory’s theorem for cones. We also demonstrate that colored numerical semigroups are particularly rich by introducing a colored version of the Frobenius number.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/012.2023.01545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore affine semigroup versions of the convex geometry theorems of Helly, Tverberg, and Carathéodory. Additionally, we develop a new theory of colored affine semigroups , where the semigroup generators each receive a color and the elements of the semigroup take into account the colors used (the classical theory of affine semigroups coincides with the case in which all generators have the same color). We prove an analog of Tverberg’s theorem and colorful Helly’s theorem for semigroups, as well as a version of colorful Carathéodory’s theorem for cones. We also demonstrate that colored numerical semigroups are particularly rich by introducing a colored version of the Frobenius number.
分享
查看原文
(有色)仿射半群的凸性
在本文中,我们探讨了Helly, Tverberg和carath odory的凸几何定理的仿射半群版本。此外,我们发展了一种新的彩色仿射半群理论,其中半群的每个生成子都有一个颜色,并且半群的元素考虑使用的颜色(仿射半群的经典理论与所有生成子都具有相同颜色的情况一致)。我们证明了关于半群的Tverberg定理和多彩的Helly定理的一个类比,以及关于锥的多彩的carathimodory定理的一个版本。我们还通过引入Frobenius数的一个彩色版本证明了彩色数值半群是特别丰富的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信