{"title":"The variance-gamma ratio distribution","authors":"Robert E. Gaunt, Siqi Li","doi":"10.5802/crmath.495","DOIUrl":null,"url":null,"abstract":"Let $X$ and $Y$ be independent variance-gamma random variables with zero location parameter; then the exact probability density function of the ratio $X/Y$ is derived. Some basic distributional properties are also derived, including identification of parameter regimes under which the density is bounded, asymptotic approximations of tail probabilities, and fractional moments; in particular, we see that the mean is undefined. In the case that $X$ and $Y$ are independent symmetric variance-gamma random variables, an exact formula is also given for the cumulative distribution function of the ratio $X/Y$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $X$ and $Y$ be independent variance-gamma random variables with zero location parameter; then the exact probability density function of the ratio $X/Y$ is derived. Some basic distributional properties are also derived, including identification of parameter regimes under which the density is bounded, asymptotic approximations of tail probabilities, and fractional moments; in particular, we see that the mean is undefined. In the case that $X$ and $Y$ are independent symmetric variance-gamma random variables, an exact formula is also given for the cumulative distribution function of the ratio $X/Y$.