Compactly supported cohomology of a tower of graphs and generic representations of PGL n over a local field

Pub Date : 2023-10-24 DOI:10.5802/crmath.485
Anis Rajhi
{"title":"Compactly supported cohomology of a tower of graphs and generic representations of PGL n over a local field","authors":"Anis Rajhi","doi":"10.5802/crmath.485","DOIUrl":null,"url":null,"abstract":"Let F be a non-archimedean locally compact field and let G n be the group PGL n (F). In this paper we construct a tower (X ˜ k ) k⩾0 of graphs fibred over the one-skeleton of the Bruhat–Tits building of G n . We prove that a non-spherical and irreducible generic complex representation of G n can be realized as a quotient of the compactly supported cohomology of the graph X ˜ k for k large enough. Moreover, when the representation is cuspidal then it has a unique realization in a such model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be a non-archimedean locally compact field and let G n be the group PGL n (F). In this paper we construct a tower (X ˜ k ) k⩾0 of graphs fibred over the one-skeleton of the Bruhat–Tits building of G n . We prove that a non-spherical and irreducible generic complex representation of G n can be realized as a quotient of the compactly supported cohomology of the graph X ˜ k for k large enough. Moreover, when the representation is cuspidal then it has a unique realization in a such model.
分享
查看原文
图塔的紧支持上同调和局部域上PGL n的一般表示
设F是一个非阿基米德局部紧化场,并设gn是群PGL n (F)。在本文中,我们在gn的Bruhat-Tits建筑的一个骨架上构建了一个塔(X ~ k) k小于0的图形。证明了G n的非球面不可约一般复表示可以作为图X ~ k的紧支持上同调的商来实现,且k足够大。此外,当表示是倒立的,那么它在这样的模型中有一个独特的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信