Compactly supported cohomology of a tower of graphs and generic representations of PGL n over a local field

IF 0.8 4区 数学 Q2 MATHEMATICS
Anis Rajhi
{"title":"Compactly supported cohomology of a tower of graphs and generic representations of PGL n over a local field","authors":"Anis Rajhi","doi":"10.5802/crmath.485","DOIUrl":null,"url":null,"abstract":"Let F be a non-archimedean locally compact field and let G n be the group PGL n (F). In this paper we construct a tower (X ˜ k ) k⩾0 of graphs fibred over the one-skeleton of the Bruhat–Tits building of G n . We prove that a non-spherical and irreducible generic complex representation of G n can be realized as a quotient of the compactly supported cohomology of the graph X ˜ k for k large enough. Moreover, when the representation is cuspidal then it has a unique realization in a such model.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"3 3","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.485","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be a non-archimedean locally compact field and let G n be the group PGL n (F). In this paper we construct a tower (X ˜ k ) k⩾0 of graphs fibred over the one-skeleton of the Bruhat–Tits building of G n . We prove that a non-spherical and irreducible generic complex representation of G n can be realized as a quotient of the compactly supported cohomology of the graph X ˜ k for k large enough. Moreover, when the representation is cuspidal then it has a unique realization in a such model.
图塔的紧支持上同调和局部域上PGL n的一般表示
设F是一个非阿基米德局部紧化场,并设gn是群PGL n (F)。在本文中,我们在gn的Bruhat-Tits建筑的一个骨架上构建了一个塔(X ~ k) k小于0的图形。证明了G n的非球面不可约一般复表示可以作为图X ~ k的紧支持上同调的商来实现,且k足够大。此外,当表示是倒立的,那么它在这样的模型中有一个独特的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信