{"title":"Mechanistic understanding of the enhanced adsorption of diclofenac on a heat-treated and acid-leached halloysite","authors":"Choulia Latifa Halloui, Mounir Khelifa, Samira Ziane, Kheira Marouf-Khelifa, Amine Khelifa","doi":"10.1080/03067319.2023.2270425","DOIUrl":null,"url":null,"abstract":"ABSTRACTDiclofenac (DCF), a common nonsteroidal anti-inflammatory drug, is frequently detected in aquatic environments, causing serious threat to aquatic organisms and humans through bioaccumulation, persistence, and toxicity. Using eco-friendly clay-based adsorbents, samples of halloysite (H) processed at 600°C (H600-0N) and then HCl-leached with 3 N concentration (H600-3N) were prepared, characterised by Inductively Coupled Plasma (ICP), N2 adsorption – desorption, and infrared spectroscopy with Fourier transform (FTIR), and used in DCF adsorption. H600-3N exhibited a substantial surface area increase from 63 m2 g−1 for H to 434 m2 g−1 due to an elevated SiO₂/Al₂O₃ ratio of 23.83 against 1.72 for H. In this context, H600-3N and H adsorbed 165 mg g−1 and 37.9 mg g−1 of DCF, respectively. The isotherms of H600-xN(x = 0 or 3) were adequately adjusted to the Langmuir-Freundlich model, while the kinetic data were suitably described by the pseudo-second order equation. Through cross-checking the results of characterisation, DCF adsorption and the FTIR investigation between DCF and H600-3N, a mechanism has been suggested that includes two main components: hydrogen bonding between the silanol’s hydrogen atom and the negatively charged carboxylate anion and hydrophobic interactions between the – Si – O – Si – entities and the DCF aromatic rings. The elucidation of intermolecular interactions between organic contaminants and 1:1 clay minerals is essential to develop the application of these abundant and low-cost materials in wastewater treatment.KEYWORDS: Halloysitemodificationcharacterizationdiclofenac adsorptioninteractionsmechanism Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":13973,"journal":{"name":"International Journal of Environmental Analytical Chemistry","volume":"50 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03067319.2023.2270425","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTDiclofenac (DCF), a common nonsteroidal anti-inflammatory drug, is frequently detected in aquatic environments, causing serious threat to aquatic organisms and humans through bioaccumulation, persistence, and toxicity. Using eco-friendly clay-based adsorbents, samples of halloysite (H) processed at 600°C (H600-0N) and then HCl-leached with 3 N concentration (H600-3N) were prepared, characterised by Inductively Coupled Plasma (ICP), N2 adsorption – desorption, and infrared spectroscopy with Fourier transform (FTIR), and used in DCF adsorption. H600-3N exhibited a substantial surface area increase from 63 m2 g−1 for H to 434 m2 g−1 due to an elevated SiO₂/Al₂O₃ ratio of 23.83 against 1.72 for H. In this context, H600-3N and H adsorbed 165 mg g−1 and 37.9 mg g−1 of DCF, respectively. The isotherms of H600-xN(x = 0 or 3) were adequately adjusted to the Langmuir-Freundlich model, while the kinetic data were suitably described by the pseudo-second order equation. Through cross-checking the results of characterisation, DCF adsorption and the FTIR investigation between DCF and H600-3N, a mechanism has been suggested that includes two main components: hydrogen bonding between the silanol’s hydrogen atom and the negatively charged carboxylate anion and hydrophobic interactions between the – Si – O – Si – entities and the DCF aromatic rings. The elucidation of intermolecular interactions between organic contaminants and 1:1 clay minerals is essential to develop the application of these abundant and low-cost materials in wastewater treatment.KEYWORDS: Halloysitemodificationcharacterizationdiclofenac adsorptioninteractionsmechanism Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
International Journal of Environmental Analytical Chemistry comprises original research on all aspects of analytical work related to environmental problems. This includes analysis of organic, inorganic and radioactive pollutants in air, water, sediments and biota; and determination of harmful substances, including analytical methods for the investigation of chemical or metabolic breakdown patterns in the environment and in biological samples.
The journal also covers the development of new analytical methods or improvement of existing ones useful for the control and investigation of pollutants or trace amounts of naturally occurring active chemicals in all environmental compartments. Development, modification and automation of instruments and techniques with potential in environment sciences are also part of the journal.
Case studies are also considered, particularly for areas where information is scarce or lacking, providing that reported data is significant and representative, either spatially or temporally, and quality assured. Owing to the interdisciplinary nature of this journal, it will also include topics of interest to researchers in the fields of medical science (health sciences), toxicology, forensic sciences, oceanography, food sciences, biological sciences and other fields that, in one way or another, contribute to the knowledge of our environment and have to make use of analytical chemistry for this purpose.