Mathematical modelling and performance analysis of a novel auto-cascade refrigeration cycle for ultra-low temperature applications

IF 1.1 4区 工程技术 Q4 ENERGY & FUELS
Ibrahim Karacayli, Lutfiye Altay, Arif Hepbasli
{"title":"Mathematical modelling and performance analysis of a novel auto-cascade refrigeration cycle for ultra-low temperature applications","authors":"Ibrahim Karacayli, Lutfiye Altay, Arif Hepbasli","doi":"10.1504/ijex.2023.134611","DOIUrl":null,"url":null,"abstract":"The main objective of this study is to assess both energetically and exergetically the performance of a novel auto-cascade refrigeration (NACR) cycle enhanced by an internal heat exchanger using R290/R170. In contrast to the ACR cycle with a -60°C evaporation temperature, the NACR cycle displays a COP increase of 140.78% and a 148.67% improvement in exergy efficiency. Additionally, there is a notable decrease of 13.77% in compressor discharge temperature. For an evaporation temperature of -55°C, the NACR cycle achieves a COP of 0.403 and an exergy efficiency of 14.61%, with the compressor discharge temperature registering at 126.60°C.","PeriodicalId":50325,"journal":{"name":"International Journal of Exergy","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Exergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijex.2023.134611","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this study is to assess both energetically and exergetically the performance of a novel auto-cascade refrigeration (NACR) cycle enhanced by an internal heat exchanger using R290/R170. In contrast to the ACR cycle with a -60°C evaporation temperature, the NACR cycle displays a COP increase of 140.78% and a 148.67% improvement in exergy efficiency. Additionally, there is a notable decrease of 13.77% in compressor discharge temperature. For an evaporation temperature of -55°C, the NACR cycle achieves a COP of 0.403 and an exergy efficiency of 14.61%, with the compressor discharge temperature registering at 126.60°C.
一种新型超低温自串级制冷循环的数学建模和性能分析
本研究的主要目的是评估采用R290/R170的内部热交换器增强的新型自串级制冷(NACR)循环的能量和运动性能。与蒸发温度为-60℃的ACR循环相比,NACR循环的COP提高了140.78%,火用效率提高了148.67%。压缩机排气温度显著降低13.77%。当蒸发温度为-55℃时,NACR循环的COP为0.403,火用效率为14.61%,压缩机排气温度为126.60℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Exergy
International Journal of Exergy 物理-能源与燃料
CiteScore
2.10
自引率
15.40%
发文量
107
审稿时长
6 months
期刊介绍: IJEX is dedicated to providing an interdisciplinary platform for information and ideas in the field of exergy and thermodynamic optimisation. It publishes a wide range of original, high-quality research papers, and ancillary features, spanning activities from fundamental research to industrial applications. IJEX covers aspects of exergy analysis of engineering and non-engineering systems and processes in a large variety of disciplines, ranging from mechanical engineering to physics and chemical engineering to industrial ecology. Topics covered include: -Thermodynamic systems -Energy-related applications -Process optimisation -Energy systems, policies, planning -Exergy/environment modelling -Exergetic life cycle assessment -Industrial ecology -Sectoral exergy utilisation -Waste exergy emissions -Second-law efficiency -Thermo- and exergo-economics -Exergy in sustainable development -Criticisms of and problems with use of exergy -Entropy generation minimisation -Constructal theory and design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信