Exergetic comparison of a novel to a conventional small-scale power-to-ammonia cycle

IF 1.1 4区 工程技术 Q4 ENERGY & FUELS
Pascal Koschwitz, Daria Bellotti, Cheng Liang, Bernd Epple
{"title":"Exergetic comparison of a novel to a conventional small-scale power-to-ammonia cycle","authors":"Pascal Koschwitz, Daria Bellotti, Cheng Liang, Bernd Epple","doi":"10.1504/ijex.2023.134607","DOIUrl":null,"url":null,"abstract":"Green ammonia is a promising carbon-free energy vector and means to store hydrogen efficiently. Employing the software Aspen Plus®, this work presents an exergetic comparison of a novel small-scale power-to-ammonia system, to be tested in 2023 and designed for low investment cost and dynamic flexibility, to a conventional system. For a thorough evaluation six equations of state, one provided by an industry partner, as well as chemical exergies with and without excess values are compared. With 64.59%, the novel design has a 4.87% lower exergetic degree of efficiency. The difference can be attributed to the simplified design of the novel cycle, mainly to the use of an electrical preheater instead of an internal gas-gas heat exchanger and a recycle valve instead of a recycle compressor. However, an upcoming exergy economic analysis will show that the novel cycle is more economical overall, as its investment costs are lower.","PeriodicalId":50325,"journal":{"name":"International Journal of Exergy","volume":"26 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Exergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijex.2023.134607","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Green ammonia is a promising carbon-free energy vector and means to store hydrogen efficiently. Employing the software Aspen Plus®, this work presents an exergetic comparison of a novel small-scale power-to-ammonia system, to be tested in 2023 and designed for low investment cost and dynamic flexibility, to a conventional system. For a thorough evaluation six equations of state, one provided by an industry partner, as well as chemical exergies with and without excess values are compared. With 64.59%, the novel design has a 4.87% lower exergetic degree of efficiency. The difference can be attributed to the simplified design of the novel cycle, mainly to the use of an electrical preheater instead of an internal gas-gas heat exchanger and a recycle valve instead of a recycle compressor. However, an upcoming exergy economic analysis will show that the novel cycle is more economical overall, as its investment costs are lower.
一种新型与传统小型电制氨循环的能量比较
绿色氨是一种很有前途的无碳能源载体,也是有效储存氢的手段。利用Aspen Plus®软件,这项工作展示了一种新型的小型电力制氨系统的动态比较,该系统将于2023年进行测试,其设计具有低投资成本和动态灵活性,与传统系统相比。为了全面评估六个状态方程,其中一个由行业合作伙伴提供,以及有和没有过量值的化学火用进行了比较。新设计的火用效率降低了4.87%,为64.59%。差异可归因于新循环的简化设计,主要是使用电预热器而不是内部气体-气体换热器,使用回收阀而不是循环压缩机。然而,即将到来的能源经济分析将表明,由于其投资成本较低,新周期总体上更具经济性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Exergy
International Journal of Exergy 物理-能源与燃料
CiteScore
2.10
自引率
15.40%
发文量
107
审稿时长
6 months
期刊介绍: IJEX is dedicated to providing an interdisciplinary platform for information and ideas in the field of exergy and thermodynamic optimisation. It publishes a wide range of original, high-quality research papers, and ancillary features, spanning activities from fundamental research to industrial applications. IJEX covers aspects of exergy analysis of engineering and non-engineering systems and processes in a large variety of disciplines, ranging from mechanical engineering to physics and chemical engineering to industrial ecology. Topics covered include: -Thermodynamic systems -Energy-related applications -Process optimisation -Energy systems, policies, planning -Exergy/environment modelling -Exergetic life cycle assessment -Industrial ecology -Sectoral exergy utilisation -Waste exergy emissions -Second-law efficiency -Thermo- and exergo-economics -Exergy in sustainable development -Criticisms of and problems with use of exergy -Entropy generation minimisation -Constructal theory and design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信