{"title":"Power quality improvement and seamless transfer in a grid-connected microgrid system using <i>H</i><SUB align=\"right\">∞ controller","authors":"V. Lavanya, N. Senthil Kumar","doi":"10.1504/ijaac.2023.134553","DOIUrl":null,"url":null,"abstract":"In this paper, an H∞ controller-based cascaded control strategy has been discussed and analysed for the improvement of power quality and smooth seamless transition between the operating modes in a grid-connected microgrid system. The control strategy involves two control loops namely, an outer grid current control loop and an inner local load voltage control loop. Both the control loops are designed using H∞ repetitive controllers. Particle swarm optimisation (PSO) technique is used to optimise the weighting parameters of the H∞ controller to design an optimal controller for achieving the desired performance. The main objective of the control strategy is to minimise the harmonic content present in the load voltage and the grid current ensuring smooth transition between the operating modes of the microgrid without any noticeable transients. The H∞ repetitive controller with optimised weighting parameters outperforms the other traditional controllers in achieving better dynamic response with reduced THD.","PeriodicalId":45089,"journal":{"name":"International Journal of Automation and Control","volume":"120 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijaac.2023.134553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an H∞ controller-based cascaded control strategy has been discussed and analysed for the improvement of power quality and smooth seamless transition between the operating modes in a grid-connected microgrid system. The control strategy involves two control loops namely, an outer grid current control loop and an inner local load voltage control loop. Both the control loops are designed using H∞ repetitive controllers. Particle swarm optimisation (PSO) technique is used to optimise the weighting parameters of the H∞ controller to design an optimal controller for achieving the desired performance. The main objective of the control strategy is to minimise the harmonic content present in the load voltage and the grid current ensuring smooth transition between the operating modes of the microgrid without any noticeable transients. The H∞ repetitive controller with optimised weighting parameters outperforms the other traditional controllers in achieving better dynamic response with reduced THD.
期刊介绍:
IJAAC addresses the evolution and realisation of the theory, algorithms, techniques, schemes and tools for any kind of automation and control platforms including macro, micro and nano scale machineries and systems, with emphasis on implications that state-of-the-art technology choices have on both the feasibility and practicability of the intended applications. This perspective acknowledges the complexity of the automation, instrumentation and process control methods and delineates itself as an interface between the theory and practice existing in parallel over diverse spheres. Topics covered include: -Control theory and practice- Identification and modelling- Mechatronics- Application of soft computing- Real-time issues- Distributed control and remote monitoring- System integration- Fault detection and isolation (FDI)- Virtual instrumentation and control- Fieldbus technology and interfaces- Agriculture, environment, health applications- Industry, military, space applications