{"title":"Efficient breast cancer detection using novel intensity partitioning-based clustering algorithm and multi-dimensional LSTM cyclic neural network","authors":"Gul Shaira Banu Jahangeer, T. Dhiliphan Rajkumar","doi":"10.1504/ijmei.2023.134536","DOIUrl":null,"url":null,"abstract":"Recently, early detection of breast cancer is significant to reduce the mortality rate, especially in women. Hence, the study aims to classify breast cancer from digital database for screening mammography (DDSM) dataset using partition and intensity based segmentation algorithm and modified convolutional neural network-long short-term memory (CNN-LSTM) classifier. Initially, pre-processing is performed using Gaussian filtering by taking the mammogram image. Then, it is segmented using a novel intensity partitioning-based clustering algorithm (IPCA). Further, feature extraction is performed and finally, classification is implemented using a novel multi-dimensional LSTM cyclic neural network (MLSTM-CNN). The analysis is performed to evaluate the efficiency of the proposed system and the outcomes explored its efficacy in breast cancer detection.","PeriodicalId":39126,"journal":{"name":"International Journal of Medical Engineering and Informatics","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmei.2023.134536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, early detection of breast cancer is significant to reduce the mortality rate, especially in women. Hence, the study aims to classify breast cancer from digital database for screening mammography (DDSM) dataset using partition and intensity based segmentation algorithm and modified convolutional neural network-long short-term memory (CNN-LSTM) classifier. Initially, pre-processing is performed using Gaussian filtering by taking the mammogram image. Then, it is segmented using a novel intensity partitioning-based clustering algorithm (IPCA). Further, feature extraction is performed and finally, classification is implemented using a novel multi-dimensional LSTM cyclic neural network (MLSTM-CNN). The analysis is performed to evaluate the efficiency of the proposed system and the outcomes explored its efficacy in breast cancer detection.
期刊介绍:
IJMEI promotes an understanding of the structural/functional aspects of disease mechanisms and the application of technology towards the treatment/management of such diseases. It seeks to promote interdisciplinary collaboration between those interested in the theoretical and clinical aspects of medicine and to foster the application of computers and mathematics to problems arising from medical sciences. IJMEI includes authoritative review papers, the reporting of original research, and evaluation reports of new/existing techniques and devices. Each issue also contains a comprehensive information service. Topics covered include Hospital information/medical record systems, data protection/privacy Disease modelling/analysis, evidence-based clinical modelling/studies Computer-based patient/disease management systems Clinical trials/studies, outcome-based studies/analysis Electronic patient monitoring systems Nanotechnology in medicine, medical applications Tissue engineering, artificial organs, biomaterials design Healthcare standards, service standardisation Controlled medical terminology/vocabularies Nursing informatics, systems integration Healthcare/hospital management, economics Medical technology, intelligent instrumentation, telemedicine Medical/molecular imaging, disease management Bioinformatics, human genome studies/analysis Drug design.