A new form of LSMR for solving linear systems and least-squares problems

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY
Maryam Mojarrab, Afsaneh Hasanpour, Somayyeh Ghadamyari
{"title":"A new form of LSMR for solving linear systems and least-squares problems","authors":"Maryam Mojarrab, Afsaneh Hasanpour, Somayyeh Ghadamyari","doi":"10.1504/ijcsm.2023.134561","DOIUrl":null,"url":null,"abstract":"The least squares minimal residual (LSMR) method of Fong and Saunders (2011) is an algorithm for solving linear systems Ax = b and least-squares problems min∥Ax - b∥2 that is analytically equivalent to the MINRES method applied to a normal equation ATAx = AT b so that the quantities ∥ATrk∥2 are minimised (where rk = b - Axk is the residual for current iterate xk). This method is based on the Golub-Kahan bidiagonalisation 1 process, which generates orthonormal Krylov basis vectors. Here, the Golub-Kahan bidiagonalisation 2 process is implemented in the LSMR algorithm. This substitution makes the algorithm simpler than the standard algorithm. Also, numerical results show the new form to be competitive.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2023.134561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The least squares minimal residual (LSMR) method of Fong and Saunders (2011) is an algorithm for solving linear systems Ax = b and least-squares problems min∥Ax - b∥2 that is analytically equivalent to the MINRES method applied to a normal equation ATAx = AT b so that the quantities ∥ATrk∥2 are minimised (where rk = b - Axk is the residual for current iterate xk). This method is based on the Golub-Kahan bidiagonalisation 1 process, which generates orthonormal Krylov basis vectors. Here, the Golub-Kahan bidiagonalisation 2 process is implemented in the LSMR algorithm. This substitution makes the algorithm simpler than the standard algorithm. Also, numerical results show the new form to be competitive.
求解线性系统和最小二乘问题的LSMR新形式
Fong和Saunders(2011)的最小二乘最小残差(LSMR)方法是一种求解线性系统Ax = b和最小二乘问题min∥Ax - b∥2的算法,其解析等效于应用于正常方程ATAx = AT b的MINRES方法,从而使数量∥ATrk∥2最小化(其中rk = b - Axk是当前迭代xk的残差)。该方法基于Golub-Kahan双对角化1过程,该过程生成标准正交的Krylov基向量。这里,在LSMR算法中实现了Golub-Kahan双对角化2过程。这种替换使算法比标准算法更简单。数值结果表明,新形式具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
37
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信