{"title":"$\\delta^{\\sharp}(2,2)$-Ideal Centroaffine Hypersurfaces of Dimension 4","authors":"Handan Yıldırım, Luc Vrancken","doi":"10.11650/tjm/230706","DOIUrl":null,"url":null,"abstract":"Ideal submanifolds have been studied from various aspects since Chen invented $\\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\\delta^{\\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\\delta^{\\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\\delta^{\\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":"65 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/230706","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ideal submanifolds have been studied from various aspects since Chen invented $\delta$-invariants in early 1990s (see [12] for a survey). In centroaffine differential geometry, Chen's invariants denoted by $\delta^{\sharp}$ are used to determine an optimal bound for the squared norm of the Tchebychev vector field of a hypersurface. We point out that a hypersurface attaining this bound is said to be an ideal centroaffine hypersurface. In this paper, we deal with $\delta^{\sharp}(2,2)$-ideal centroaffine hypersurfaces in $\mathbb{R}^{5}$ and in particularly, we focus on $4$-dimensional $\delta^{\sharp}(2,2)$-ideal centroaffine hypersurfaces of type $1$.
期刊介绍:
The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.