The prospects of clean hydrogen utilization in power generation industry

IF 1.8 Q4 ENERGY & FUELS
AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023047
Daido Fujita
{"title":"The prospects of clean hydrogen utilization in power generation industry","authors":"Daido Fujita","doi":"10.3934/energy.2023047","DOIUrl":null,"url":null,"abstract":"<abstract> <p>Due to the commitment of carbon neutrality by 2050, all possible measures to be adopted to reduce greenhouse gas emissions. The purpose of power generation from clean hydrogen is towards achieving carbon-neutral ambitions and to hit the net zero target by 2050. Power generation from clean hydrogen is one of the solutions to substitute or minimize the use of natural gas and ensure energy security of the nation. This study mainly focuses on the quantitative and qualitative measures of potential renewable resources to produce the required hydrogen for power generation from combined cycle power plants, hydrogen storage, and material compatibility with hydrogen. PVsyst software is utilized to assess the potential of power generation from solar PV plants. Techno-economics assessments of co-generation (hydrogen 20% vol. + natural gas 80% vol.) with clean hydrogen produced from PEM electrolyzers are analyzed in this study. The novelty or highlight of this study is that it is feasible technically and economically to implement clean hydrogen utilization in power generation sectors to reduce green-house gas emission.</p> </abstract>","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"168 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the commitment of carbon neutrality by 2050, all possible measures to be adopted to reduce greenhouse gas emissions. The purpose of power generation from clean hydrogen is towards achieving carbon-neutral ambitions and to hit the net zero target by 2050. Power generation from clean hydrogen is one of the solutions to substitute or minimize the use of natural gas and ensure energy security of the nation. This study mainly focuses on the quantitative and qualitative measures of potential renewable resources to produce the required hydrogen for power generation from combined cycle power plants, hydrogen storage, and material compatibility with hydrogen. PVsyst software is utilized to assess the potential of power generation from solar PV plants. Techno-economics assessments of co-generation (hydrogen 20% vol. + natural gas 80% vol.) with clean hydrogen produced from PEM electrolyzers are analyzed in this study. The novelty or highlight of this study is that it is feasible technically and economically to implement clean hydrogen utilization in power generation sectors to reduce green-house gas emission.

清洁氢在发电工业中的应用前景
& lt; abstract>由于承诺到2050年实现碳中和,采取一切可能的措施减少温室气体排放。清洁氢发电的目的是实现碳中和的雄心,并在2050年前达到净零排放的目标。清洁氢发电是替代或减少天然气使用,保障国家能源安全的解决方案之一。本研究主要关注联合循环电厂生产发电所需氢气的潜在可再生资源的定量和定性措施、储氢以及与氢的材料相容性。利用PVsyst软件来评估太阳能光伏电站的发电潜力。本研究分析了PEM电解槽生产的清洁氢气的热电联产(氢气体积为20% +天然气体积为80%)的技术经济评估。本研究的新颖性或亮点在于,在发电行业实施清洁氢利用以减少温室气体排放在技术上和经济上都是可行的。& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信