Min Qin, Ravi Kumar, Mohammad Shabaz, Sanjay Agal, Pavitar Parkash Singh, Anooja Ammini
{"title":"Broadcast speech recognition and control system based on Internet of Things sensors for smart cities","authors":"Min Qin, Ravi Kumar, Mohammad Shabaz, Sanjay Agal, Pavitar Parkash Singh, Anooja Ammini","doi":"10.1515/jisys-2023-0067","DOIUrl":null,"url":null,"abstract":"Abstract With the wide popularization of Internet of Things (IoT) technology, the design and implementation of intelligent speech equipment have attracted more and more researchers’ attention. Speech recognition is one of the core technologies to control intelligent mechanical equipment. An industrial IoT sensor-based broadcast speech recognition and control system is presented to address the issue of integrating a broadcast speech recognition and control system with an IoT sensor for smart cities. In this work, a design approach for creating an intelligent voice control system for the Robot operating system (ROS) is provided. The speech recognition control program for the ROS is created using the Baidu intelligent voice software development kit, and the experiment is run on a particular robot platform. ROS makes use of communication modules to implement network connections between various system modules, mostly via topic-based asynchronous data transmission. A point-to-point network structure serves as the communication channel for the many operations that make up the ROS. The hardware component is mostly made up of the main controller’s motor driving module, a power module, a WiFi module, a Bluetooth module, a laser ranging module, etc. According to the experimental findings, the control system can identify the gathered sound signals, translate them into control instructions, and then direct the robot platform to carry out the necessary actions in accordance with the control instructions. Over 95% of speech is recognized. The control system has a high recognition rate and is simple to use, which is what most industrial controls require. It has significant implications for the advancement of control technology and may significantly increase production and life efficiency.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"80 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the wide popularization of Internet of Things (IoT) technology, the design and implementation of intelligent speech equipment have attracted more and more researchers’ attention. Speech recognition is one of the core technologies to control intelligent mechanical equipment. An industrial IoT sensor-based broadcast speech recognition and control system is presented to address the issue of integrating a broadcast speech recognition and control system with an IoT sensor for smart cities. In this work, a design approach for creating an intelligent voice control system for the Robot operating system (ROS) is provided. The speech recognition control program for the ROS is created using the Baidu intelligent voice software development kit, and the experiment is run on a particular robot platform. ROS makes use of communication modules to implement network connections between various system modules, mostly via topic-based asynchronous data transmission. A point-to-point network structure serves as the communication channel for the many operations that make up the ROS. The hardware component is mostly made up of the main controller’s motor driving module, a power module, a WiFi module, a Bluetooth module, a laser ranging module, etc. According to the experimental findings, the control system can identify the gathered sound signals, translate them into control instructions, and then direct the robot platform to carry out the necessary actions in accordance with the control instructions. Over 95% of speech is recognized. The control system has a high recognition rate and is simple to use, which is what most industrial controls require. It has significant implications for the advancement of control technology and may significantly increase production and life efficiency.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.