Out-of-sample error estimation for M-estimators with convex penalty

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Pierre C Bellec
{"title":"Out-of-sample error estimation for M-estimators with convex penalty","authors":"Pierre C Bellec","doi":"10.1093/imaiai/iaad031","DOIUrl":null,"url":null,"abstract":"Abstract A generic out-of-sample error estimate is proposed for $M$-estimators regularized with a convex penalty in high-dimensional linear regression where $(\\boldsymbol{X},\\boldsymbol{y})$ is observed and the dimension $p$ and sample size $n$ are of the same order. The out-of-sample error estimate enjoys a relative error of order $n^{-1/2}$ in a linear model with Gaussian covariates and independent noise, either non-asymptotically when $p/n\\le \\gamma $ or asymptotically in the high-dimensional asymptotic regime $p/n\\to \\gamma ^{\\prime}\\in (0,\\infty )$. General differentiable loss functions $\\rho $ are allowed provided that the derivative of the loss is 1-Lipschitz; this includes the least-squares loss as well as robust losses such as the Huber loss and its smoothed versions. The validity of the out-of-sample error estimate holds either under a strong convexity assumption, or for the L1-penalized Huber M-estimator and the Lasso under a sparsity assumption and a bound on the number of contaminated observations. For the square loss and in the absence of corruption in the response, the results additionally yield $n^{-1/2}$-consistent estimates of the noise variance and of the generalization error. This generalizes, to arbitrary convex penalty and arbitrary covariance, estimates that were previously known for the Lasso.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"17 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A generic out-of-sample error estimate is proposed for $M$-estimators regularized with a convex penalty in high-dimensional linear regression where $(\boldsymbol{X},\boldsymbol{y})$ is observed and the dimension $p$ and sample size $n$ are of the same order. The out-of-sample error estimate enjoys a relative error of order $n^{-1/2}$ in a linear model with Gaussian covariates and independent noise, either non-asymptotically when $p/n\le \gamma $ or asymptotically in the high-dimensional asymptotic regime $p/n\to \gamma ^{\prime}\in (0,\infty )$. General differentiable loss functions $\rho $ are allowed provided that the derivative of the loss is 1-Lipschitz; this includes the least-squares loss as well as robust losses such as the Huber loss and its smoothed versions. The validity of the out-of-sample error estimate holds either under a strong convexity assumption, or for the L1-penalized Huber M-estimator and the Lasso under a sparsity assumption and a bound on the number of contaminated observations. For the square loss and in the absence of corruption in the response, the results additionally yield $n^{-1/2}$-consistent estimates of the noise variance and of the generalization error. This generalizes, to arbitrary convex penalty and arbitrary covariance, estimates that were previously known for the Lasso.
带凸惩罚的m估计量的样本外误差估计
摘要针对高维线性回归中存在$(\boldsymbol{X},\boldsymbol{y})$且维数$p$和样本量$n$为同阶的凸惩罚正则化$M$ -估计量,提出了一种通用的样本外误差估计方法。在具有高斯协变量和独立噪声的线性模型中,样本外误差估计的相对误差为$n^{-1/2}$阶,在$p/n\le \gamma $时是非渐近的,在高维渐近区域$p/n\to \gamma ^{\prime}\in (0,\infty )$时是渐近的。一般可微损失函数$\rho $是允许的,只要损失的导数是1-Lipschitz;这包括最小二乘损失以及鲁棒损失,如Huber损失及其平滑版本。样本外误差估计的有效性要么在强凸性假设下成立,要么在稀疏性假设和受污染观测数的限制下,对l1惩罚的Huber m估计和Lasso估计成立。对于平方损失和响应中没有损坏的情况,结果还产生$n^{-1/2}$ -一致的噪声方差和泛化误差估计。这推广到任意凸惩罚和任意协方差,这是以前已知的Lasso估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信