{"title":"On a geometric approach to the estimation of interpolation projectors","authors":"Nevskii, Mikhail, Ukhalov, Alexey","doi":"10.18255/1818-1015-2023-3-246-257","DOIUrl":null,"url":null,"abstract":"Suppose $\\Omega$ is a closed bounded subset of ${\\mathbb R}^n,$ $S$ is an $n$-dimensional non-degenerate simplex, $\\xi(\\Omega;S):=\\min \\left\\{\\sigma\\geq 1: \\, \\Omega\\subset \\sigma S\\right\\}$. Here $\\sigma S$ is the result of homothety of $S$ with respect to the center of gravity with coefficient $\\sigma$. Let $d\\geq n+1,$ $\\varphi_1(x),\\ldots,\\varphi_d(x)$ be linearly independent monomials in $n$ variables, $\\varphi_1(x)\\equiv 1,$ $\\varphi_2(x)=x_1,\\ \\ldots, \\ \\varphi_{n+1}(x)=x_n.$ Put $\\Pi:={\\rm lin}(\\varphi_1,\\ldots,\\varphi_d).$ The interpolation projector $P: C(\\Omega)\\to \\Pi$ with a set of nodes $x^{(1)},\\ldots, x^{(d)}$ $ \\in \\Omega$ is defined by equalities $Pf\\left(x^{(j)}\\right)=f\\left(x^{(j)}\\right).$ Denote by $\\|P\\|_{\\Omega}$ the norm of $P$ as an operator from $C(\\Omega)$ to $C(\\Omega)$. Consider the mapping $T:{\\mathbb R}^n\\to {\\mathbb R}^{d-1}$ of the form $T(x):=(\\varphi_2(x),\\ldots,\\varphi_d(x)). $ We have the following inequalities: $ \\frac{1}{2}\\left(1+\\frac{1}{d-1}\\right)\\left(\\|P\\|_{\\Omega}-1\\right)+1$ $ \\leq \\xi(T(\\Omega);S)\\leq \\frac{d}{2}\\left(\\|P\\|_{\\Omega}-1\\right)+1. $ Here $S$ is the $(d-1)$-dimensional simplex with vertices $T\\left(x^{(j)}\\right).$ We discuss this and other relations for polynomial interpolation of functions continuous on a segment. The results of numerical analysis are presented.","PeriodicalId":31017,"journal":{"name":"Modelirovanie i Analiz Informacionnyh Sistem","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelirovanie i Analiz Informacionnyh Sistem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18255/1818-1015-2023-3-246-257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Suppose $\Omega$ is a closed bounded subset of ${\mathbb R}^n,$ $S$ is an $n$-dimensional non-degenerate simplex, $\xi(\Omega;S):=\min \left\{\sigma\geq 1: \, \Omega\subset \sigma S\right\}$. Here $\sigma S$ is the result of homothety of $S$ with respect to the center of gravity with coefficient $\sigma$. Let $d\geq n+1,$ $\varphi_1(x),\ldots,\varphi_d(x)$ be linearly independent monomials in $n$ variables, $\varphi_1(x)\equiv 1,$ $\varphi_2(x)=x_1,\ \ldots, \ \varphi_{n+1}(x)=x_n.$ Put $\Pi:={\rm lin}(\varphi_1,\ldots,\varphi_d).$ The interpolation projector $P: C(\Omega)\to \Pi$ with a set of nodes $x^{(1)},\ldots, x^{(d)}$ $ \in \Omega$ is defined by equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right).$ Denote by $\|P\|_{\Omega}$ the norm of $P$ as an operator from $C(\Omega)$ to $C(\Omega)$. Consider the mapping $T:{\mathbb R}^n\to {\mathbb R}^{d-1}$ of the form $T(x):=(\varphi_2(x),\ldots,\varphi_d(x)). $ We have the following inequalities: $ \frac{1}{2}\left(1+\frac{1}{d-1}\right)\left(\|P\|_{\Omega}-1\right)+1$ $ \leq \xi(T(\Omega);S)\leq \frac{d}{2}\left(\|P\|_{\Omega}-1\right)+1. $ Here $S$ is the $(d-1)$-dimensional simplex with vertices $T\left(x^{(j)}\right).$ We discuss this and other relations for polynomial interpolation of functions continuous on a segment. The results of numerical analysis are presented.