High-dimensional asymptotics of Langevin dynamics in spiked matrix models

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Tengyuan Liang, Subhabrata Sen, Pragya Sur
{"title":"High-dimensional asymptotics of Langevin dynamics in spiked matrix models","authors":"Tengyuan Liang, Subhabrata Sen, Pragya Sur","doi":"10.1093/imaiai/iaad042","DOIUrl":null,"url":null,"abstract":"Abstract We study Langevin dynamics for recovering the planted signal in the spiked matrix model. We provide a ‘path-wise’ characterization of the overlap between the output of the Langevin algorithm and the planted signal. This overlap is characterized in terms of a self-consistent system of integro-differential equations, usually referred to as the Crisanti–Horner–Sommers–Cugliandolo–Kurchan equations in the spin glass literature. As a second contribution, we derive an explicit formula for the limiting overlap in terms of the signal-to-noise ratio and the injected noise in the diffusion. This uncovers a sharp phase transition—in one regime, the limiting overlap is strictly positive, while in the other, the injected noise overcomes the signal, and the limiting overlap is zero.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"179 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We study Langevin dynamics for recovering the planted signal in the spiked matrix model. We provide a ‘path-wise’ characterization of the overlap between the output of the Langevin algorithm and the planted signal. This overlap is characterized in terms of a self-consistent system of integro-differential equations, usually referred to as the Crisanti–Horner–Sommers–Cugliandolo–Kurchan equations in the spin glass literature. As a second contribution, we derive an explicit formula for the limiting overlap in terms of the signal-to-noise ratio and the injected noise in the diffusion. This uncovers a sharp phase transition—in one regime, the limiting overlap is strictly positive, while in the other, the injected noise overcomes the signal, and the limiting overlap is zero.
尖刺矩阵模型中Langevin动力学的高维渐近性
摘要研究了刺突矩阵模型中植入信号的朗之万动力学恢复方法。我们提供了朗格万算法输出和植入信号之间重叠的“路径”表征。这种重叠是用自洽的积分-微分方程组来表征的,在自旋玻璃文献中通常被称为Crisanti-Horner-Sommers-Cugliandolo-Kurchan方程。作为第二个贡献,我们导出了一个明确的公式,用于限制重叠的信噪比和扩散中的注入噪声。这揭示了一个尖锐的相变——在一个区域,极限重叠严格为正,而在另一个区域,注入的噪声克服了信号,极限重叠为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信