Sorting Out Quantum Chaos

IF 1.5 Q2 PHYSICS, MULTIDISCIPLINARY
Physics Pub Date : 2023-09-01 DOI:10.1103/physics.16.149
Adolfo del Campo
{"title":"Sorting Out Quantum Chaos","authors":"Adolfo del Campo","doi":"10.1103/physics.16.149","DOIUrl":null,"url":null,"abstract":"Figure 1: Artistic rendition of a many-body open quantum system, made up of many quantum units (represented as spins) that interact among themselves and with the surrounding environment (orange lines and lightning represent, respectively, mutual interactions and coupling to the environment). If the system is forgetful, or Markovian, its dynamics can be described by a Lindbladian “superoperator.” Kawabata and colleagues showed that all possible Lindbladians can be classified in 38 groups based on symmetry. Credit: A. del Campo/University of Luxembourg further increasing the number of states to consider. As a result, open, many-body quantum systems remain a frontier of exploration in physics, for which researchers haven’t developed a systematic theoretical framework. A new study by Kohei Kawabata of Princeton University and colleagues has taken an important step toward developing such a general framework by offering a complete classification of these systems based on symmetry principles [1] (Fig. 1). The classification will help researchers chart the territory of possible phenomena that might emerge in a vast range of open, many-body systems, including those that might display “quantum chaos.”","PeriodicalId":20136,"journal":{"name":"Physics","volume":"115 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physics.16.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Figure 1: Artistic rendition of a many-body open quantum system, made up of many quantum units (represented as spins) that interact among themselves and with the surrounding environment (orange lines and lightning represent, respectively, mutual interactions and coupling to the environment). If the system is forgetful, or Markovian, its dynamics can be described by a Lindbladian “superoperator.” Kawabata and colleagues showed that all possible Lindbladians can be classified in 38 groups based on symmetry. Credit: A. del Campo/University of Luxembourg further increasing the number of states to consider. As a result, open, many-body quantum systems remain a frontier of exploration in physics, for which researchers haven’t developed a systematic theoretical framework. A new study by Kohei Kawabata of Princeton University and colleagues has taken an important step toward developing such a general framework by offering a complete classification of these systems based on symmetry principles [1] (Fig. 1). The classification will help researchers chart the territory of possible phenomena that might emerge in a vast range of open, many-body systems, including those that might display “quantum chaos.”
整理量子混沌
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics
Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
6.20%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信