On Sum and Geometric Sum of independent New Quasi Lindley Random Variables and its Applications

Alaa Rafat El Alosey
{"title":"On Sum and Geometric Sum of independent New Quasi Lindley Random Variables and its Applications","authors":"Alaa Rafat El Alosey","doi":"10.24297/jam.v22i.9528","DOIUrl":null,"url":null,"abstract":"The Laplace transformation method is used to drive the distribution of the sum Sn of n-fixed random variables, which has a new quasi Lindley distribution with two parameters θ and α, NQLD (θ,α). The sum of NQLD (SUNQLD) distribution is obtained in pdf and cdf formats. It is discussed how to calculate the random sum SN of a random number of NQLD random variables. The random sum of the NQLD distribution's pdf and cdf are calculated. When N has a geometric distribution, the geometric sum of NQLD distribution (GSN QLD) was introduced as an example of a random number of NQLD random variables. For all cases, some statistical measures are determined. The distribution's parameters are estimated using the maximum likelihood method. To test the viability and efficiency of the proposed distributions SNQLD and GSNQLD, lifetime count data sets from acute myeloid leukaemia are fitted. The results should become accepted knowledge in the fields of probability theory and its allied sciences. In addition, the histogram, fitted probability density function (pdf), and P-P plots for the analyzed real data set are presented.","PeriodicalId":31190,"journal":{"name":"Journal of Research and Advances in Mathematics Education","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research and Advances in Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/jam.v22i.9528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Laplace transformation method is used to drive the distribution of the sum Sn of n-fixed random variables, which has a new quasi Lindley distribution with two parameters θ and α, NQLD (θ,α). The sum of NQLD (SUNQLD) distribution is obtained in pdf and cdf formats. It is discussed how to calculate the random sum SN of a random number of NQLD random variables. The random sum of the NQLD distribution's pdf and cdf are calculated. When N has a geometric distribution, the geometric sum of NQLD distribution (GSN QLD) was introduced as an example of a random number of NQLD random variables. For all cases, some statistical measures are determined. The distribution's parameters are estimated using the maximum likelihood method. To test the viability and efficiency of the proposed distributions SNQLD and GSNQLD, lifetime count data sets from acute myeloid leukaemia are fitted. The results should become accepted knowledge in the fields of probability theory and its allied sciences. In addition, the histogram, fitted probability density function (pdf), and P-P plots for the analyzed real data set are presented.
独立新拟Lindley随机变量的和与几何和及其应用
利用拉普拉斯变换方法驱动n个固定随机变量和Sn的分布,得到一个具有两个参数θ和α的新的拟林德利分布,NQLD (θ,α)。NQLD (SUNQLD)分布的总和以pdf和cdf格式得到。讨论了如何计算随机数NQLD随机变量的随机和SN。计算了NQLD分布的pdf和cdf的随机和。当N具有几何分布时,引入NQLD分布的几何和(GSN QLD)作为随机数NQLD随机变量的例子。对于所有情况,都确定了一些统计度量。利用极大似然法对分布参数进行估计。为了测试所提出的SNQLD和GSNQLD分布的可行性和效率,拟合了急性髓性白血病的寿命计数数据集。其结果应成为概率论及其相关科学领域公认的知识。此外,给出了分析的真实数据集的直方图、拟合概率密度函数(pdf)和P-P图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
12
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信