Malware authorship attribution: Unmasking the culprits behind malicious software

Harmon Lee Bruce Chia
{"title":"Malware authorship attribution: Unmasking the culprits behind malicious software","authors":"Harmon Lee Bruce Chia","doi":"10.54254/2977-3903/2/2023021","DOIUrl":null,"url":null,"abstract":"With the digital age ushering in an unprecedented proliferation of malware, accurately attributing these malicious software variants to their original authors or affiliated groups has emerged as a crucial endeavor in cybersecurity. This study delves into the intricacies of malware authorship attribution by combining traditional analytical techniques with advanced machine learning methodologies. An integrated approach, encompassing static and dynamic analyses, yielded promising results in the challenging realm of malware attribution. Despite the encouraging outcomes, the research highlighted the multifaceted complexities involved, especially considering the sophisticated obfuscation techniques frequently employed by attackers. This paper emphasizes the merits of a holistic attribution model and underscores the importance of continuous innovation in the face of an ever-evolving threat landscape.","PeriodicalId":476183,"journal":{"name":"Advances in Engineering Innovation","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2977-3903/2/2023021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the digital age ushering in an unprecedented proliferation of malware, accurately attributing these malicious software variants to their original authors or affiliated groups has emerged as a crucial endeavor in cybersecurity. This study delves into the intricacies of malware authorship attribution by combining traditional analytical techniques with advanced machine learning methodologies. An integrated approach, encompassing static and dynamic analyses, yielded promising results in the challenging realm of malware attribution. Despite the encouraging outcomes, the research highlighted the multifaceted complexities involved, especially considering the sophisticated obfuscation techniques frequently employed by attackers. This paper emphasizes the merits of a holistic attribution model and underscores the importance of continuous innovation in the face of an ever-evolving threat landscape.
恶意软件作者归属:揭露恶意软件背后的罪魁祸首
随着数字时代的到来,恶意软件出现了前所未有的扩散,准确地将这些恶意软件的变体归因于它们的原作者或附属组织已经成为网络安全领域的一项关键工作。本研究通过将传统分析技术与先进的机器学习方法相结合,深入研究了恶意软件作者归属的复杂性。一种集成的方法,包括静态和动态分析,在恶意软件归属的挑战性领域产生了有希望的结果。尽管取得了令人鼓舞的成果,但该研究强调了所涉及的多方面的复杂性,特别是考虑到攻击者经常使用的复杂的混淆技术。本文强调了整体归因模型的优点,并强调了在面对不断变化的威胁环境时持续创新的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信