A Potent Collocation Approach Based on Shifted Gegenbauer Polynomials for Nonlinear Time Fractional Burgers’ Equations

IF 0.6 Q3 MATHEMATICS
E. Magdy, W. M. Abd-Elhameed, Y. H. Youssri, G. M. Moatimid, A. G. Atta
{"title":"A Potent Collocation Approach Based on Shifted Gegenbauer Polynomials for Nonlinear Time Fractional Burgers’ Equations","authors":"E. Magdy, W. M. Abd-Elhameed, Y. H. Youssri, G. M. Moatimid, A. G. Atta","doi":"10.37256/cm.4420233302","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical strategy for solving the nonlinear time fractional Burgers's equation (TFBE) to obtain approximate solutions of TFBE. During this procedure, the collocation approach is used. The proposed numerical approximations are supposed to be a double sum of the products of two sets of basis functions. The two sets of polynomials are presented here: a modified set of shifted Gegenbauer polynomials and a shifted Gegenbauer polynomial set. Some specific integers and fractional derivatives are explicitly given as a combination of basis functions to apply the proposed collocation procedure. This method transforms the governing boundary-value problem into a set of nonlinear algebraic equations. Newton's approach can be used to solve the resulting nonlinear system. An analysis of the precision of the proposed method is provided. Various examples are presented and compared to some existing methods in the literature to prove the reliability of the suggested approach.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"12 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420233302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a numerical strategy for solving the nonlinear time fractional Burgers's equation (TFBE) to obtain approximate solutions of TFBE. During this procedure, the collocation approach is used. The proposed numerical approximations are supposed to be a double sum of the products of two sets of basis functions. The two sets of polynomials are presented here: a modified set of shifted Gegenbauer polynomials and a shifted Gegenbauer polynomial set. Some specific integers and fractional derivatives are explicitly given as a combination of basis functions to apply the proposed collocation procedure. This method transforms the governing boundary-value problem into a set of nonlinear algebraic equations. Newton's approach can be used to solve the resulting nonlinear system. An analysis of the precision of the proposed method is provided. Various examples are presented and compared to some existing methods in the literature to prove the reliability of the suggested approach.
基于移位Gegenbauer多项式的非线性时间分数型Burgers方程的有效配置方法
本文提出了求解非线性时间分数型Burgers方程(TFBE)的一种数值策略,得到了该方程的近似解。在此过程中,使用了搭配方法。所提出的数值近似应该是两组基函数乘积的二重和。本文给出了两个多项式集:一个修正的移位的Gegenbauer多项式集和一个移位的Gegenbauer多项式集。一些特定的整数和分数阶导数被明确地作为基函数的组合来应用所提出的配置过程。该方法将控制边值问题转化为一组非线性代数方程。牛顿法可用于求解所得到的非线性系统。最后对该方法的精度进行了分析。给出了各种实例,并与文献中的一些现有方法进行了比较,以证明所建议方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信