{"title":"Coordination Control Algorithm for Wheel Torque of Parallel Hybrid Vehicle","authors":"J.X. Ma, B.B. Lu, X.F. Lin","doi":"10.4273/ijvss.15.3.19","DOIUrl":null,"url":null,"abstract":"When the Parallel Hybrid Vehicle (PHV) wheel’s torque is coordinated and controlled, the issue of coordination control of wheel torque under mode switching has some limitations. Therefore, the experiment proposed a novel wheel torque coordination control technique for parallel hybrid vehicles. The feedforward and feedback joint control technique of the Wheel Drive Torque (WDT) control algorithm may be used to implement the wheel torque drive control. The technique for the wheel braking Torque Control (TC) is applied to obtain the wheel braking torque through the Fuzzy PID controller (F-PID). A Dynamic Coordination Controller (DCC) is created and the engine output torque is adjusted using the PID control technique of wheel angular velocity difference. The motor provides the compensation torque. The deviation of the intended angular velocity from the actual angular velocity is adjusted intime to realize the wheel's dynamic coordination while being controlled by a mode switch. The results demonstrates that the reaction time of the proposed algorithm can be reduced to 0.08s; The overall output TC precision is improved by 11.1%. The precision of the predicted velocity of vehicle speed tracking has risen by 8.0%. The vehicle dynamics during the transition procedure is improved by 4.4%, which enhances the ride comfort and the PHV’s power.","PeriodicalId":14391,"journal":{"name":"International Journal of Vehicle Structures and Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Structures and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4273/ijvss.15.3.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
When the Parallel Hybrid Vehicle (PHV) wheel’s torque is coordinated and controlled, the issue of coordination control of wheel torque under mode switching has some limitations. Therefore, the experiment proposed a novel wheel torque coordination control technique for parallel hybrid vehicles. The feedforward and feedback joint control technique of the Wheel Drive Torque (WDT) control algorithm may be used to implement the wheel torque drive control. The technique for the wheel braking Torque Control (TC) is applied to obtain the wheel braking torque through the Fuzzy PID controller (F-PID). A Dynamic Coordination Controller (DCC) is created and the engine output torque is adjusted using the PID control technique of wheel angular velocity difference. The motor provides the compensation torque. The deviation of the intended angular velocity from the actual angular velocity is adjusted intime to realize the wheel's dynamic coordination while being controlled by a mode switch. The results demonstrates that the reaction time of the proposed algorithm can be reduced to 0.08s; The overall output TC precision is improved by 11.1%. The precision of the predicted velocity of vehicle speed tracking has risen by 8.0%. The vehicle dynamics during the transition procedure is improved by 4.4%, which enhances the ride comfort and the PHV’s power.
期刊介绍:
The International Journal of Vehicle Structures and Systems (IJVSS) is a quarterly journal and is published by MechAero Foundation for Technical Research and Education Excellence (MAFTREE), based in Chennai, India. MAFTREE is engaged in promoting the advancement of technical research and education in the field of mechanical, aerospace, automotive and its related branches of engineering, science, and technology. IJVSS disseminates high quality original research and review papers, case studies, technical notes and book reviews. All published papers in this journal will have undergone rigorous peer review. IJVSS was founded in 2009. IJVSS is available in Print (ISSN 0975-3060) and Online (ISSN 0975-3540) versions. The prime focus of the IJVSS is given to the subjects of modelling, analysis, design, simulation, optimization and testing of structures and systems of the following: 1. Automotive vehicle including scooter, auto, car, motor sport and racing vehicles, 2. Truck, trailer and heavy vehicles for road transport, 3. Rail, bus, tram, emerging transit and hybrid vehicle, 4. Terrain vehicle, armoured vehicle, construction vehicle and Unmanned Ground Vehicle, 5. Aircraft, launch vehicle, missile, airship, spacecraft, space exploration vehicle, 6. Unmanned Aerial Vehicle, Micro Aerial Vehicle, 7. Marine vehicle, ship and yachts and under water vehicles.