{"title":"A New Approach to Detect Power Quality Disturbances in Smart Cities Using Scaling-Based Chirplet Transform with Strategically Placed Smart Meters","authors":"Pampa Sinha, Kaushik Paul, Sanchari Deb, Ankit Vidyarthi, Abhishek Singh Kilak, Deepak Gupta","doi":"10.1142/s0218126624500932","DOIUrl":null,"url":null,"abstract":"The growth of Internet of Things (IoT)-enabled devices has increased the amount of data created by the distribution network’s periphery nodes, requiring more data transfer capacity. Recent applications’ real-time requirements have strained standard computing paradigms, and data processing has struggled to keep up. Edge computing is employed in this research to detect distribution network faults, allowing for instant sensing and real-time reaction to the control room for faster investigation of distribution problems and power outages, making the system more reliable. Moreover, to overcome the challenges of fault detection, advanced signal processing methods need to be integrated with the Adaboost classifier. An Adaboost-based edge device, suitable for installation on top of a power pole, is proposed in this research as a means of real-time fault detection. To increase throughput, decrease latency and offload network traffic, data collecting, feature extraction and Adaboost-based problem identification are all performed in an integrated edge node. Enhanced detection accuracy (98.67%) and decreased latency (115.2 ms) verify the effectiveness of the suggested approach. In this research, we enhance the classical chirplets transform to create the scaling-basis chirplet transform (SBCT) for time–frequency (TF) analysis. This approach modulates the TF basis around the relevant time function to modify the chirp rate with frequency and time. By carefully selecting the sampling frequency, it is possible to discriminate between short circuit fault and high-impedance fault (HIF) by calculating spectral entropy. The TF representation obtained with the SBCT provides considerably higher energy concentrations, even for signals with numerous components, closely spaced frequencies and heavy background noise.","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"47 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218126624500932","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of Internet of Things (IoT)-enabled devices has increased the amount of data created by the distribution network’s periphery nodes, requiring more data transfer capacity. Recent applications’ real-time requirements have strained standard computing paradigms, and data processing has struggled to keep up. Edge computing is employed in this research to detect distribution network faults, allowing for instant sensing and real-time reaction to the control room for faster investigation of distribution problems and power outages, making the system more reliable. Moreover, to overcome the challenges of fault detection, advanced signal processing methods need to be integrated with the Adaboost classifier. An Adaboost-based edge device, suitable for installation on top of a power pole, is proposed in this research as a means of real-time fault detection. To increase throughput, decrease latency and offload network traffic, data collecting, feature extraction and Adaboost-based problem identification are all performed in an integrated edge node. Enhanced detection accuracy (98.67%) and decreased latency (115.2 ms) verify the effectiveness of the suggested approach. In this research, we enhance the classical chirplets transform to create the scaling-basis chirplet transform (SBCT) for time–frequency (TF) analysis. This approach modulates the TF basis around the relevant time function to modify the chirp rate with frequency and time. By carefully selecting the sampling frequency, it is possible to discriminate between short circuit fault and high-impedance fault (HIF) by calculating spectral entropy. The TF representation obtained with the SBCT provides considerably higher energy concentrations, even for signals with numerous components, closely spaced frequencies and heavy background noise.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.