Chern Fong Lee, Christodoulos Tryfonidis, Muk Chen Ong
{"title":"Power Performance and Response Analysis of a Semi-Submersible Wind Turbine Combined With Flap-Type and Torus Wave Energy Converters","authors":"Chern Fong Lee, Christodoulos Tryfonidis, Muk Chen Ong","doi":"10.1115/1.4056520","DOIUrl":null,"url":null,"abstract":"Abstract An integrated offshore wind and wave energy system is an attractive concept in areas with abundant wind and wave energy resources. The sharing of supporting platform and facilities, e.g., mooring systems, offers significant cost savings. This will effectively lower the levelized cost of energy (LCOE). In the present study, a conceptual design consisting of a braceless semi-submersible floating horizontal axis wind turbine (FHAWT), three flap-type wave energy converters (WECs), as well as a torus (donut-shaped) point absorber-type WEC is proposed. The flap-type WECs harvest wave energy through the flap motion caused by oscillating wave surge, while the torus WEC absorbs wave energy generated from its heaving motion. The absorbed mechanical power of the power take-off (PTO) systems is calculated based on linear damping forces and the motions of the WECs relative to the supporting platform. Hydrodynamic interaction between the WECs and the supporting platform is considered by including the coupling terms in the added mass and potential damping coefficient matrices. A fully coupled aero-servo-hydro-elastic numerical model of the concept is constructed. The feasibility study of the concept is carried out using time-domain simulations. Only operational environmental conditions are simulated based on simultaneous wind and wave hindcast data of a selected offshore site. The effects of the WECs on the wind turbine, platform motions, and WEC power take-off are examined. Based on the power performance of WECs, recommendations are also provided for optimum power absorption.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"76 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056520","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract An integrated offshore wind and wave energy system is an attractive concept in areas with abundant wind and wave energy resources. The sharing of supporting platform and facilities, e.g., mooring systems, offers significant cost savings. This will effectively lower the levelized cost of energy (LCOE). In the present study, a conceptual design consisting of a braceless semi-submersible floating horizontal axis wind turbine (FHAWT), three flap-type wave energy converters (WECs), as well as a torus (donut-shaped) point absorber-type WEC is proposed. The flap-type WECs harvest wave energy through the flap motion caused by oscillating wave surge, while the torus WEC absorbs wave energy generated from its heaving motion. The absorbed mechanical power of the power take-off (PTO) systems is calculated based on linear damping forces and the motions of the WECs relative to the supporting platform. Hydrodynamic interaction between the WECs and the supporting platform is considered by including the coupling terms in the added mass and potential damping coefficient matrices. A fully coupled aero-servo-hydro-elastic numerical model of the concept is constructed. The feasibility study of the concept is carried out using time-domain simulations. Only operational environmental conditions are simulated based on simultaneous wind and wave hindcast data of a selected offshore site. The effects of the WECs on the wind turbine, platform motions, and WEC power take-off are examined. Based on the power performance of WECs, recommendations are also provided for optimum power absorption.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.