Computation of Turing bifurcation normal form for n -component reaction-diffusion systems.

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Edgardo Villar-Sepúlveda, Alan Champneys
{"title":"Computation of Turing bifurcation normal form for <i>n</i> -component reaction-diffusion systems.","authors":"Edgardo Villar-Sepúlveda, Alan Champneys","doi":"10.1145/3625560","DOIUrl":null,"url":null,"abstract":"General expressions are derived for the amplitude equation valid at a Turing bifurcation of a system of reaction-diffusion equations in one spatial dimension, with an arbitrary number of components. The normal form is computed up to fifth order, which enables the detection and analysis of codimension-two points where the criticality of the bifurcation changes. The expressions are implemented within a Python package, in which the user needs to specify only expressions for the reaction kinetics and the values of diffusion constants. The code is augmented with a Mathematica routine to compute curves of Turing bifurcations in a parameter plane and automatically detect codimension-two points. The software is illustrated with examples that show the versatility of the method including a case with cross-diffusion, a higher-order scalar equation and a four-component system.","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"57 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3625560","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

General expressions are derived for the amplitude equation valid at a Turing bifurcation of a system of reaction-diffusion equations in one spatial dimension, with an arbitrary number of components. The normal form is computed up to fifth order, which enables the detection and analysis of codimension-two points where the criticality of the bifurcation changes. The expressions are implemented within a Python package, in which the user needs to specify only expressions for the reaction kinetics and the values of diffusion constants. The code is augmented with a Mathematica routine to compute curves of Turing bifurcations in a parameter plane and automatically detect codimension-two points. The software is illustrated with examples that show the versatility of the method including a case with cross-diffusion, a higher-order scalar equation and a four-component system.
n组分反应扩散系统图灵分岔范式的计算。
导出了一维任意分量的反应扩散方程组的图灵分岔下振幅方程的一般表达式。范式被计算到五阶,这使得检测和分析共维-两个点,其中分叉的临界变化。表达式在Python包中实现,其中用户只需要指定反应动力学表达式和扩散常数值。该代码在Mathematica程序的基础上进行了扩充,以计算参数平面上的图灵分岔曲线并自动检测余维二点。该软件通过实例说明了该方法的通用性,包括交叉扩散,高阶标量方程和四分量系统的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信