Empirical Analysis of the Prevalence of HVAC Faults in Commercial Buildings

IF 1.7 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Eliot Crowe, Yimin Chen, Hayden Reeve, David Yuill, Amir Ebrahimifakhar, Yuxuan Chen, Lucas Troup, Amanda Smith, Jessica Granderson
{"title":"Empirical Analysis of the Prevalence of HVAC Faults in Commercial Buildings","authors":"Eliot Crowe, Yimin Chen, Hayden Reeve, David Yuill, Amir Ebrahimifakhar, Yuxuan Chen, Lucas Troup, Amanda Smith, Jessica Granderson","doi":"10.1080/23744731.2023.2263324","DOIUrl":null,"url":null,"abstract":"Commercial building HVAC systems experience many sensing, mechanical, and control-related faults that increase energy consumption and impact occupant comfort. Fault detection & diagnostics (FDD) software has been demonstrated to identify and help diagnose these types of faults. Several studies have demonstrated FDD energy savings potential, but there is limited empirical data characterizing the quantity and type of faults reported by FDD tools. This paper presents results of an FDD fault reporting study, employing multi-year monitoring data for over 60,000 pieces of HVAC equipment, covering over 90 fault types, and using new metrics that we developed to characterize fault prevalence. Study results offer an unprecedented accounting of the quantity of faults reported, the most commonly occurring faults, and fault persistence. We find that 21 air handling unit (AHU) faults were reported on 20% or more AHUs in our dataset, and 18 AHU faults persisted for more than 20% of the time period covered by the data. On any given day, 40% of AHUs and 30% of air terminal units saw a reported fault of some kind. Based on in-depth analysis of these results we provide recommendations for building operators, FDD software developers, and researchers to enable more efficient commercial building operation.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology for the Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23744731.2023.2263324","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Commercial building HVAC systems experience many sensing, mechanical, and control-related faults that increase energy consumption and impact occupant comfort. Fault detection & diagnostics (FDD) software has been demonstrated to identify and help diagnose these types of faults. Several studies have demonstrated FDD energy savings potential, but there is limited empirical data characterizing the quantity and type of faults reported by FDD tools. This paper presents results of an FDD fault reporting study, employing multi-year monitoring data for over 60,000 pieces of HVAC equipment, covering over 90 fault types, and using new metrics that we developed to characterize fault prevalence. Study results offer an unprecedented accounting of the quantity of faults reported, the most commonly occurring faults, and fault persistence. We find that 21 air handling unit (AHU) faults were reported on 20% or more AHUs in our dataset, and 18 AHU faults persisted for more than 20% of the time period covered by the data. On any given day, 40% of AHUs and 30% of air terminal units saw a reported fault of some kind. Based on in-depth analysis of these results we provide recommendations for building operators, FDD software developers, and researchers to enable more efficient commercial building operation.
商业建筑暖通空调故障发生率的实证分析
商业建筑暖通空调系统经历了许多传感、机械和控制相关的故障,增加了能源消耗,影响了乘员的舒适度。故障检测和诊断(FDD)软件已被证明可以识别和帮助诊断这些类型的故障。一些研究已经证明了FDD节能的潜力,但是有有限的经验数据表征FDD工具报告的故障的数量和类型。本文介绍了FDD故障报告研究的结果,该研究采用了超过60,000件HVAC设备的多年监测数据,涵盖了90多种故障类型,并使用了我们开发的表征故障普遍性的新指标。研究结果对报告的故障数量、最常发生的故障和故障持久性提供了前所未有的统计。我们发现,在我们的数据集中,20%或更多的AHU上报告了21个空气处理单元(AHU)故障,并且18个AHU故障持续超过数据覆盖的20%的时间。在任何一天,40%的ahu和30%的航空终端设备都报告出现了某种故障。基于对这些结果的深入分析,我们为建筑运营商、FDD软件开发人员和研究人员提供建议,以实现更有效的商业建筑运营。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology for the Built Environment
Science and Technology for the Built Environment THERMODYNAMICSCONSTRUCTION & BUILDING TECH-CONSTRUCTION & BUILDING TECHNOLOGY
CiteScore
4.30
自引率
5.30%
发文量
78
期刊介绍: Science and Technology for the Built Environment (formerly HVAC&R Research) is ASHRAE’s archival research publication, offering comprehensive reporting of original research in science and technology related to the stationary and mobile built environment, including indoor environmental quality, thermodynamic and energy system dynamics, materials properties, refrigerants, renewable and traditional energy systems and related processes and concepts, integrated built environmental system design approaches and tools, simulation approaches and algorithms, building enclosure assemblies, and systems for minimizing and regulating space heating and cooling modes. The journal features review articles that critically assess existing literature and point out future research directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信