{"title":"Multiferroic Properties of (1- <i>x</i> )BiFeO <sub>3</sub> - <i>x</i> BaTiO <sub>3</sub> Lead-Free Ceramics","authors":"Phakakorn Panpho, Kumaret Intrirak, Naratip Vittayakorn, Pongsakorn Jantaratana, Theerachai Bongkarn, Rattiphorn Sumang","doi":"10.1080/10584587.2023.2234562","DOIUrl":null,"url":null,"abstract":"AbstractLead-free (1-x)BiFeO3-xBaTiO3 ceramics (abbreviated as BF-xBT), in a composition range of 0.23 ≤ x ≤ 0.33 mol%, were prepared by the conventional solid-state reaction method. The effect of x content on phase structure, microstructure, magnetic and electrical properties of BF-xBT ceramics is also investigated. With the incorporation of x content, the coexistence of rhombohedral and tetragonal phases was observed. Field emission scanning electron microscope (FESEM) micrographs revealed that the average grain size of BF-xBT ceramics first decreased and then increased with adding x content. The fracture surface of samples showed a mode of inter-granular fracture and intra-granular fracture. The ferroelectric properties were enhanced by adding x ≥ 0.29 mol% in the BF-xBT system. The dielectric and magnetic properties were improved with a maximum value are εr = 888,711, Mmax = 0.40 emu/g, Mr = 0.17 emu/g, and Hc = 3.7 kOe at x = 0.25 mol%Keywords: BiFeO3–BaTiO3multiferroic materialsmicrostructureferroelectric and magnetic properties Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported financially by The National Science, Research and Innovation Fund (NSRF) through Naresuan University (R2565B059). The authors wish to thank the Faculty of Science and Technology, Pibulsongkram Rajabhat University is also supported. This work received the best poster award from the International Conference and Exhibition on Science, Technology and Engineering of Materials (ISTEM2022).","PeriodicalId":13686,"journal":{"name":"Integrated Ferroelectrics","volume":"96 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10584587.2023.2234562","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
AbstractLead-free (1-x)BiFeO3-xBaTiO3 ceramics (abbreviated as BF-xBT), in a composition range of 0.23 ≤ x ≤ 0.33 mol%, were prepared by the conventional solid-state reaction method. The effect of x content on phase structure, microstructure, magnetic and electrical properties of BF-xBT ceramics is also investigated. With the incorporation of x content, the coexistence of rhombohedral and tetragonal phases was observed. Field emission scanning electron microscope (FESEM) micrographs revealed that the average grain size of BF-xBT ceramics first decreased and then increased with adding x content. The fracture surface of samples showed a mode of inter-granular fracture and intra-granular fracture. The ferroelectric properties were enhanced by adding x ≥ 0.29 mol% in the BF-xBT system. The dielectric and magnetic properties were improved with a maximum value are εr = 888,711, Mmax = 0.40 emu/g, Mr = 0.17 emu/g, and Hc = 3.7 kOe at x = 0.25 mol%Keywords: BiFeO3–BaTiO3multiferroic materialsmicrostructureferroelectric and magnetic properties Disclosure StatementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported financially by The National Science, Research and Innovation Fund (NSRF) through Naresuan University (R2565B059). The authors wish to thank the Faculty of Science and Technology, Pibulsongkram Rajabhat University is also supported. This work received the best poster award from the International Conference and Exhibition on Science, Technology and Engineering of Materials (ISTEM2022).
期刊介绍:
Integrated Ferroelectrics provides an international, interdisciplinary forum for electronic engineers and physicists as well as process and systems engineers, ceramicists, and chemists who are involved in research, design, development, manufacturing and utilization of integrated ferroelectric devices. Such devices unite ferroelectric films and semiconductor integrated circuit chips. The result is a new family of electronic devices, which combine the unique nonvolatile memory, pyroelectric, piezoelectric, photorefractive, radiation-hard, acoustic and/or dielectric properties of ferroelectric materials with the dynamic memory, logic and/or amplification properties and miniaturization and low-cost advantages of semiconductor i.c. technology.