Synergy effect in blend Orange G/Rhodamine B ultrafiltration, using natural bentonite-based membrane

IF 1.6 Q3 WATER RESOURCES
Radia Labied, Fouzia Touahra, Souad Hazam, Maâmar Ouraghi, Redouane Chebout, Khaldoun Bachari, Djahida Lerari
{"title":"Synergy effect in blend Orange G/Rhodamine B ultrafiltration, using natural bentonite-based membrane","authors":"Radia Labied, Fouzia Touahra, Souad Hazam, Maâmar Ouraghi, Redouane Chebout, Khaldoun Bachari, Djahida Lerari","doi":"10.2166/wpt.2023.195","DOIUrl":null,"url":null,"abstract":"Abstract Attempting to reduce issues with dumping and water pollution, bio-based membrane material (MB1000), based on bentonite was elaborated for application in tangential ultrafiltration. For this, morphological properties, textural properties, and chemical structure of the elaborated membrane material were established using Fourier transform infrared spectroscopy, X-ray diffraction, and Brunauer–Emmett–Teller analyses. Water permeability, chemical resistance, as well as point of zero charge of the membrane material were also investigated. The studied membrane material has a mesoporous structure, with a pore size of 7.20 nm and a water permeability of 318.06 L/h.m2.bar. The effect of transmembrane material pressure, pH solution, and concentration on Orange G (OG) and Rhodamine B (RB) dye rejection efficiency was examined and hence optimized. Besides, a mixture of RB and OG dyes was tested for membrane material ultrafiltration in a simultaneous system (RB/OG). Remarkably, an enhancement of the rejection results was noticed for the two dyes (ROG = 94.33%, RRB = 89.38%) resulting from a synergic effect of hydrogen bonding as well as electrostatic interactions generated from functional groups of the molecules dyes.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":" 25","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2023.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Attempting to reduce issues with dumping and water pollution, bio-based membrane material (MB1000), based on bentonite was elaborated for application in tangential ultrafiltration. For this, morphological properties, textural properties, and chemical structure of the elaborated membrane material were established using Fourier transform infrared spectroscopy, X-ray diffraction, and Brunauer–Emmett–Teller analyses. Water permeability, chemical resistance, as well as point of zero charge of the membrane material were also investigated. The studied membrane material has a mesoporous structure, with a pore size of 7.20 nm and a water permeability of 318.06 L/h.m2.bar. The effect of transmembrane material pressure, pH solution, and concentration on Orange G (OG) and Rhodamine B (RB) dye rejection efficiency was examined and hence optimized. Besides, a mixture of RB and OG dyes was tested for membrane material ultrafiltration in a simultaneous system (RB/OG). Remarkably, an enhancement of the rejection results was noticed for the two dyes (ROG = 94.33%, RRB = 89.38%) resulting from a synergic effect of hydrogen bonding as well as electrostatic interactions generated from functional groups of the molecules dyes.
协同效应中混合橙G/罗丹明B超滤,采用天然膨润土基膜
摘要为了减少倾倒和水污染问题,阐述了基于膨润土的生物基膜材料(MB1000)在切向超滤中的应用。为此,利用傅里叶变换红外光谱、x射线衍射和布鲁诺尔-埃米特-泰勒分析确定了制备膜材料的形态特性、结构特性和化学结构。研究了膜材料的透水性、耐化学性和零电荷点。所研究的膜材料具有介孔结构,孔径为7.20 nm,透水性为318.06 L/h.m2.bar。考察了跨膜材料压力、pH溶液和浓度对橙G (OG)和罗丹明B (RB)染料去除率的影响,并对其进行了优化。此外,还在RB/OG同步系统中测试了RB和OG染料混合对膜材料的超滤效果。两种染料(ROG = 94.33%, RRB = 89.38%)的去除率明显提高,这是由于氢键的协同作用以及分子染料官能团产生的静电相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
6.20%
发文量
136
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信